OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 3, Iss. 5 — May. 1, 2012
  • pp: 981–990

Magnetoencephalography with a chip-scale atomic magnetometer

T. H. Sander, J. Preusser, R. Mhaskar, J. Kitching, L. Trahms, and S. Knappe  »View Author Affiliations


Biomedical Optics Express, Vol. 3, Issue 5, pp. 981-990 (2012)
http://dx.doi.org/10.1364/BOE.3.000981


View Full Text Article

Enhanced HTML    Acrobat PDF (1232 KB) | SpotlightSpotlight on Optics





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on the measurement of somatosensory-evoked and spontaneous magnetoencephalography (MEG) signals with a chip-scale atomic magnetometer (CSAM) based on optical spectroscopy of alkali atoms. The uncooled, fiber-coupled CSAM has a sensitive volume of 0.77 mm3 inside a sensor head of volume 1 cm3 and enabled convenient handling, similar to an electroencephalography (EEG) electrode. When positioned over O1 of a healthy human subject, α-oscillations were observed in the component of the magnetic field perpendicular to the scalp surface. Furthermore, by stimulation at the right wrist of the subject, somatosensory-evoked fields were measured with the sensors placed over C3. Higher noise levels of the CSAM were partly compensated by higher signal amplitudes due to the shorter distance between CSAM and scalp.

© 2012 OSA

OCIS Codes
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology
(230.0230) Optical devices : Optical devices

ToC Category:
Neuroscience and Brain Imaging

History
Original Manuscript: February 9, 2012
Revised Manuscript: April 5, 2012
Manuscript Accepted: April 15, 2012
Published: April 17, 2012

Virtual Issues
June 8, 2012 Spotlight on Optics

Citation
T. H. Sander, J. Preusser, R. Mhaskar, J. Kitching, L. Trahms, and S. Knappe, "Magnetoencephalography with a chip-scale atomic magnetometer," Biomed. Opt. Express 3, 981-990 (2012)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-3-5-981


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Hämäläinen, R. Hari, R. J. Ilmoniemi, J. Knuutila, and O. V. Lounasmaa, “Magnetoencephalography – theory, instrumentation, and applications to noninvasive studies of the working human brain,” Rev. Mod. Phys.65(2), 413–497 (1993). [CrossRef]
  2. P. Hansen, M, Kringelbach, and R. Salmelin, MEG: an Introduction to Methods (Oxford University Press, 2010).
  3. J. Vrba, J. Nenonen, and L. Trahms, “Biomagnetism,” in The SQUID Handbook. Vol. II. Applications of SQUIDs and SQUID Systems, J. Clarke, and A. I. Braginski, ed. (Wiley-VCH, Weinheim, 2006).
  4. H. B. Dang, A. C. Maloof, and M. V. Romalis, “Ultrahigh sensitivity magnetic field and magnetization measurements with an atomic magnetometer,” Appl. Phys. Lett.97(15), 151110 (2010). [CrossRef]
  5. M. N. Livanov, A. N. Kozlov, A. V. Korinevskiĭ, V. P. Markin, and S. E. Sinel’nikova, “O registratsii magnitnykh poleĭ cheloveka [Recording of human magnetic fields],” Dokl. Akad. Nauk SSSR238(1), 253–256 (1978). [PubMed]
  6. G. Bison, R. Wynands, and A. Weis, “Dynamical mapping of the human cardiomagnetic field with a room-temperature, laser-optical sensor,” Opt. Express11(8), 904–909 (2003). [CrossRef] [PubMed]
  7. G. Bison, N. Castagna, A. Hofer, P. Knowles, J. L. Schenker, M. Kasprzak, H. Saudan, and A. Weis, “A room temperature 19-channel magnetic field mapping device for cardiac signals,” Appl. Phys. Lett.95(17), 173701 (2009). [CrossRef]
  8. H. Xia, A. Ben-Amar Baranga, D. Hoffman, and M. V. Romalis, “Magnetoencephalography with an atomic magnetometer,” Appl. Phys. Lett.89(21), 211104 (2006). [CrossRef]
  9. R. Wyllie, M. Kauer, G. Smetana, R. Wakai, and T. Walker, “Magnetocardiography with a modular spin-exchange relaxation free atomic magnetometer array,” arXiv:1106.4779v2 (2011).
  10. S. Taue, Y. Sugihara, T. Kobayashi, S. Ichihara, K. Ishikawa, and N. Mizutani, “Development of a highly sensitive optically pumped atomic magnetometer for biomagnetic field measurements: A phantom study,” IEEE Trans. Magn.46(9), 3635–3638 (2010). [CrossRef]
  11. C. Johnson, P. D. D. Schwindt, and M. Weisend, “Magnetoencephalography with a two-color pump-probe, fiber-coupled atomic magnetometer,” Appl. Phys. Lett.97(24), 243703 (2010). [CrossRef]
  12. S. Xu, V. V. Yashchuk, M. H. Donaldson, S. M. Rochester, D. Budker, and A. Pines, “Magnetic resonance imaging with an optical atomic magnetometer,” Proc. Natl. Acad. Sci. U.S.A.103(34), 12668–12671 (2006). [CrossRef] [PubMed]
  13. I. M. Savukov, V. S. Zotev, P. L. Volegov, M. A. Espy, A. N. Matlashov, J. J. Gomez, and R. H. Kraus, “MRI with an atomic magnetometer suitable for practical imaging applications,” J. Magn. Reson.199(2), 188–191 (2009). [CrossRef] [PubMed]
  14. W. C. Griffith, S. Knappe, and J. Kitching, “Femtotesla atomic magnetometry in a microfabricated vapor cell,” Opt. Express18(26), 27167–27172 (2010). [CrossRef] [PubMed]
  15. J. Dupont-Roc, S. Haroche, and C. Cohen-Tannoudji, “Detection of very weak magnetic fields (10−9 gauss) by 87Rb zero-field level crossing resonances,” Phys. Lett. A28(9), 638–639 (1969). [CrossRef]
  16. V. Shah, S. Knappe, P. D. D. Schwindt, and J. Kitching, “Subpicotesla atomic magnetometry with a microfabricated vapour cell,” Nat. Photonics1(11), 649–652 (2007). [CrossRef]
  17. J. C. Allred, R. N. Lyman, T. W. Kornack, and M. V. Romalis, “High-sensitivity atomic magnetometer unaffected by spin-exchange relaxation,” Phys. Rev. Lett.89(13), 130801 (2002). [CrossRef] [PubMed]
  18. S. Knappe, T. H. Sander, O. Kosch, F. Wiekhorst, J. Kitching, and L. Trahms, “Cross-validation of microfabricated atomic magnetometers with superconducting quantum interference devices for biomagnetic applications,” Appl. Phys. Lett.97(13), 133703 (2010). [CrossRef]
  19. S. Knappe, V. Gerginov, P. D. D. Schwindt, V. Shah, H. G. Robinson, L. Hollberg, and J. Kitching, “Atomic vapor cells for chip-scale atomic clocks with improved long-term frequency stability,” Opt. Lett.30(18), 2351–2353 (2005). [CrossRef] [PubMed]
  20. M. J. Mescher, R. Lutwak, and M. Varghese, “An ultra-low-power physics package for a chip-scale atomic clock,” in The 13th International Conference on Solid-State Sensors, Actuators and Microsystems, 2005. Digest of Technical Papers. TRANSDUCERS '05 (IEEE, 2005), Vol. 1, pp. 311–316.
  21. M. Burghoff, T. H. Sander, A. Schnabel, D. Drung, L. Trahms, G. Curio, and B.-M. Mackert, “DC Magnetoencephalography: Direct measurement in a magnetically extremely-well shielded room,” Appl. Phys. Lett.85(25), 6278–6280 (2004). [CrossRef]
  22. D. Cohen, “Magnetoencephalography: evidence of magnetic fields produced by alpha-rhythm currents,” Science161(3843), 784–786 (1968). [CrossRef] [PubMed]
  23. H. Stefan, C. Hummel, G. Scheler, A. Genow, K. Druschky, C. Tilz, M. Kaltenhäuser, R. Hopfengärtner, M. Buchfelder, and J. Romstöck, “Magnetic brain source imaging of focal epileptic activity: a synopsis of 455 cases,” Brain126(11), 2396–2405 (2003). [CrossRef] [PubMed]
  24. A. Korvenoja, E. Kirveskari, H. J. Aronen, S. Avikainen, A. Brander, J. Huttunen, R. J. Ilmoniemi, J. E. Jääskeläinen, T. Kovala, J. P. Mäkelä, E. Salli, and M. Seppä, “Sensorimotor cortex localization: comparison of magnetoencephalography, functional MR imaging, and intraoperative cortical mapping,” Radiology241(1), 213–222 (2006). [CrossRef] [PubMed]
  25. S. M. Stufflebeam, N. Tanaka, and S. P. Ahlfors, “Clinical applications of magnetoencephalography,” Hum. Brain Mapp.30(6), 1813–1823 (2009). [CrossRef] [PubMed]
  26. J. Tiihonen, R. Hari, and M. Hämäläinen, “Early deflections of cerebral magnetic responses to median nerve stimulation,” Electroencephalogr. Clin. Neurophysiol.74(4), 290–296 (1989). [CrossRef] [PubMed]
  27. R. Hari and N. Forss, “Magnetoencephalography in the study of human somatosensory cortical processing,” Philos. Trans. R. Soc. Lond. B Biol. Sci.354(1387), 1145–1154 (1999). [CrossRef] [PubMed]
  28. T. H. Sander, M. Burghoff, G. Curio, and L. Trahms, “Single evoked somatosensory MEG responses extracted by time delayed decorrelation,” IEEE Trans. Signal Process.53(9), 3384–3392 (2005). [CrossRef]
  29. R. Mhaskar, J. Kitching, and S. Knappe are preparing a manuscript to be called “Performance of transmission-based low-field atomic micro-magnetometers.”
  30. J. Preusser, V. Gerginov, S. Knappe, and J. Kitching, “A microfabricated atomic magnetometer,” in Proceedings of IEEE Conference on Sensors (IEEE, 2008), pp. 344–346.
  31. A. I. Ahonen, M. S. Hämäläinen, R. J. Ilmoniemi, M. J. Kajola, J. E. T. Knuutila, J. T. Simola, and V. A. Vilkman, “Sampling theory for neuromagnetic detector arrays,” IEEE Trans. Biomed. Eng.40(9), 859–869 (1993). [CrossRef] [PubMed]
  32. S. Taulu and M. Kajola, “Presentation of electromagnetic multichannel data: the signal space separation method,” J. Appl. Phys.97(12), 124905 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited