OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 3, Iss. 6 — Jun. 1, 2012
  • pp: 1381–1398

Review of tissue simulating phantoms with controllable optical, mechanical and structural properties for use in optical coherence tomography

Guy Lamouche, Brendan F. Kennedy, Kelsey M. Kennedy, Charles-Etienne Bisaillon, Andrea Curatolo, Gord Campbell, Valérie Pazos, and David D. Sampson  »View Author Affiliations

Biomedical Optics Express, Vol. 3, Issue 6, pp. 1381-1398 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (2210 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We review the development of phantoms for optical coherence tomography (OCT) designed to replicate the optical, mechanical and structural properties of a range of tissues. Such phantoms are a key requirement for the continued development of OCT techniques and applications. We focus on phantoms based on silicone, fibrin and poly(vinyl alcohol) cryogels (PVA-C), as we believe these materials hold the most promise for durable and accurate replication of tissue properties.

© 2012 OSA

OCIS Codes
(110.4500) Imaging systems : Optical coherence tomography
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(170.7050) Medical optics and biotechnology : Turbid media

ToC Category:
Calibration, Validation and Phantom Studies

Original Manuscript: March 2, 2012
Revised Manuscript: April 30, 2012
Manuscript Accepted: May 4, 2012
Published: May 15, 2012

Virtual Issues
Phantoms for the Performance Evaluation and Validation of Optical Medical Imaging Devices (2012) Biomedical Optics Express

Guy Lamouche, Brendan F. Kennedy, Kelsey M. Kennedy, Charles-Etienne Bisaillon, Andrea Curatolo, Gord Campbell, Valérie Pazos, and David D. Sampson, "Review of tissue simulating phantoms with controllable optical, mechanical and structural properties for use in optical coherence tomography," Biomed. Opt. Express 3, 1381-1398 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt.11(4), 041102 (2006). [CrossRef] [PubMed]
  2. R. J. Nordstrom, “Phantoms as standards in optical measurements,” Proc. SPIE7906, 79060H (2011). [CrossRef]
  3. V. V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis (SPIE, 2000).
  4. J. M. Schmitt, “OCT elastography: imaging microscopic deformation and strain of tissue,” Opt. Express3(6), 199–211 (1998). [CrossRef] [PubMed]
  5. A. L. Oldenburg, F. J.-J. Toublan, K. S. Suslick, A. Wei, and S. A. Boppart, “Magnetomotive contrast for in vivo optical coherence tomography,” Opt. Express13(17), 6597–6614 (2005). [CrossRef] [PubMed]
  6. X. Li, C. Chudoba, T. Ko, C. Pitris, and J. G. Fujimoto, “Imaging needle for optical coherence tomography,” Opt. Lett.25(20), 1520–1522 (2000). [CrossRef] [PubMed]
  7. G. J. Tearney, S. Waxman, M. Shishkov, B. J. Vakoc, M. J. Suter, M. I. Freilich, A. E. Desjardins, W. Y. Oh, L. A. Bartlett, M. Rosenberg, and B. E. Bouma, “Three-dimensional coronary artery microscopy by intracoronary optical frequency domain imaging,” JACC Cardiovasc. Imaging1(6), 752–761 (2008). [CrossRef] [PubMed]
  8. Y. Pan, R. Birngruber, J. Rosperich, and R. Engelhardt, “Low-coherence optical tomography in turbid tissue: theoretical analysis,” Appl. Opt.34(28), 6564–6574 (1995). [CrossRef] [PubMed]
  9. J. Schmitt, S. Lee, and K. Yung, “An optical coherence microscope with enhanced resolving power in thick tissue,” Opt. Commun.142(4-6), 203–207 (1997). [CrossRef]
  10. P. D. Woolliams, R. A. Ferguson, C. Hart, A. Grimwood, and P. H. Tomlins, “Spatially deconvolved optical coherence tomography,” Appl. Opt.49(11), 2014–2021 (2010). [CrossRef] [PubMed]
  11. T. Moffitt, Y.-C. Chen, and S. A. Prahl, “Preparation and characterization of polyurethane optical phantoms,” J. Biomed. Opt.11(4), 041103 (2006). [CrossRef] [PubMed]
  12. B. F. Kennedy, T. R. Hillman, R. A. McLaughlin, B. C. Quirk, and D. D. Sampson, “In vivo dynamic optical coherence elastography using a ring actuator,” Opt. Express17(24), 21762–21772 (2009). [CrossRef] [PubMed]
  13. R. Bays, G. Wagnières, D. Robert, J. F. Theumann, A. Vitkin, J. F. Savary, P. Monnier, and H. van den Bergh, “Three-dimensional optical phantom and its application in photodynamic therapy,” Lasers Surg. Med.21(3), 227–234 (1997). [CrossRef] [PubMed]
  14. B. F. Kennedy, S. Loitsch, R. A. McLaughlin, L. Scolaro, P. Rigby, and D. D. Sampson, “Fibrin phantom for use in optical coherence tomography,” J. Biomed. Opt.15(3), 030507 (2010). [CrossRef] [PubMed]
  15. K. J. Surry, H. J. Austin, A. Fenster, and T. M. Peters, “Poly(vinyl alcohol) cryogel phantoms for use in ultrasound and MR imaging,” Phys. Med. Biol.49(24), 5529–5546 (2004). [CrossRef] [PubMed]
  16. H. Kaetsu, T. Uchida, and N. Shinya, “Increased effectiveness of fibrin sealant with a higher fibrin concentration,” Int. J. Adhes. Adhes.20(1), 27–31 (2000). [CrossRef]
  17. A. Kharine, S. Manohar, R. Seeton, R. G. M. Kolkman, R. A. Bolt, W. Steenbergen, and F. F. M. de Mul, “Poly(vinyl alcohol) gels for use as tissue phantoms in photoacoustic mammography,” Phys. Med. Biol.48(3), 357–370 (2003). [CrossRef] [PubMed]
  18. J. C. Hebden, B. D. Price, A. P. Gibson, and G. Royle, “A soft deformable tissue-equivalent phantom for diffuse optical tomography,” Phys. Med. Biol.51(21), 5581–5590 (2006). [CrossRef] [PubMed]
  19. C. U. Devi, R. M. Vasu, and A. K. Sood, “Design, fabrication, and characterization of a tissue-equivalent phantom for optical elastography,” J. Biomed. Opt.10(4), 044020 (2005). [CrossRef] [PubMed]
  20. R. K. Wang, Z. Ma, and S. J. Kirkpatrick, “Tissue Doppler optical coherence elastography for real time strain rate and strain mapping of soft tissue,” Appl. Phys. Lett.89(14), 144103 (2006). [CrossRef]
  21. S. J. Kirkpatrick, R. K. Wang, and D. D. Duncan, “OCT-based elastography for large and small deformations,” Opt. Express14(24), 11585–11597 (2006). [CrossRef] [PubMed]
  22. G. van Soest, F. Mastik, and A. F. van der Steen, “Polyvinyl alcohol cryogel-tissue mimicking material for vascular optical elastography,” in Biomedical Optics, Technical Digest (CD) (Optical Society of America, 2006), paper Tul33.
  23. M.-T. Tsai, H.-C. Lee, C.-W. Lu, Y.-M. Wang, C.-K. Lee, C. C. Yang, and C.-P. Chiang, “Delineation of an oral cancer lesion with swept-source optical coherence tomography,” J. Biomed. Opt.13(4), 044012 (2008). [CrossRef] [PubMed]
  24. R. A. McLaughlin, L. Scolaro, P. Robbins, C. Saunders, S. L. Jacques, and D. D. Sampson, “Parametric imaging of cancer with optical coherence tomography,” J. Biomed. Opt.15(4), 046029 (2010). [CrossRef] [PubMed]
  25. L. Scolaro, R. A. McLaughlin, B. R. Klyen, B. A. Wood, P. D. Robbins, C. M. Saunders, S. L. Jacques, and D. D. Sampson, “Parametric imaging of the local attenuation coefficient in human axillary lymph nodes assessed using optical coherence tomography,” Biomed. Opt. Express3(2), 366–379 (2012). [CrossRef] [PubMed]
  26. P. H. Tomlins, O. Adegun, E. Hagi-Pavli, K. Piper, D. Bader, and F. Fortune, “Scattering attenuation microscopy of oral epithelial dysplasia,” J. Biomed. Opt.15(6), 066003 (2010). [CrossRef] [PubMed]
  27. C. Xu, J. M. Schmitt, S. G. Carlier, and R. Virmani, “Characterization of atherosclerosis plaques by measuring both backscattering and attenuation coefficients in optical coherence tomography,” J. Biomed. Opt.13(3), 034003 (2008). [CrossRef] [PubMed]
  28. G. van Soest, T. Goderie, E. Regar, S. Koljenović, G. L. J. H. van Leenders, N. Gonzalo, S. van Noorden, T. Okamura, B. E. Bouma, G. J. Tearney, J. W. Oosterhuis, P. W. Serruys, and A. F. W. van der Steen, “Atherosclerotic tissue characterization in vivo by optical coherence tomography attenuation imaging,” J. Biomed. Opt.15(1), 011105 (2010). [CrossRef] [PubMed]
  29. T. G. van Leeuwen, D. J. Faber, and M. C. Aalders, “Measurement of the axial point spread function in scattering media using single-mode fiber-based optical coherence tomography,” IEEE J. Sel. Top. Quantum Electron.9(2), 227–233 (2003). [CrossRef]
  30. C.-E. Bisaillon, G. Lamouche, R. Maciejko, M. Dufour, and J. P. Monchalin, “Deformable and durable phantoms with controlled density of scatterers,” Phys. Med. Biol.53(13), N237–N247 (2008). [CrossRef] [PubMed]
  31. C.-E. Bisaillon, M. L. Dufour, and G. Lamouche, “Artery phantoms for intravascular optical coherence tomography: healthy arteries,” Biomed. Opt. Express2(9), 2599–2613 (2011). [CrossRef] [PubMed]
  32. R. K. Wang, “Signal degradation by multiple scattering in optical coherence tomography of dense tissue: a Monte Carlo study towards optical clearing of biotissues,” Phys. Med. Biol.47(13), 2281–2299 (2002). [CrossRef] [PubMed]
  33. M. J. Yadlowsky, J. M. Schmitt, and R. F. Bonner, “Multiple scattering in optical coherence microscopy,” Appl. Opt.34(25), 5699–5707 (1995). [CrossRef] [PubMed]
  34. J. M. Schmitt, S. Xiang, and K. M. Yung, “Speckle in optical coherence tomography,” J. Biomed. Opt.4(1), 95 (1999). [CrossRef]
  35. T. R. Hillman, S. G. Adie, V. Seemann, J. J. Armstrong, S. L. Jacques, and D. D. Sampson, “Correlation of static speckle with sample properties in optical coherence tomography,” Opt. Lett.31(2), 190–192 (2006). [CrossRef] [PubMed]
  36. T. R. Hillman, A. Curatolo, B. F. Kennedy, and D. D. Sampson, “Detection of multiple scattering in optical coherence tomography by speckle correlation of angle-dependent B-scans,” Opt. Lett.35(12), 1998–2000 (2010). [CrossRef] [PubMed]
  37. B. F. Kennedy, A. Curatolo, T. R. Hillman, C. M. Saunders, and D. D. Sampson, “Speckle reduction in optical coherence tomography images using tissue viscoelasticity,” J. Biomed. Opt.16(2), 020506 (2011). [CrossRef] [PubMed]
  38. X. Liang, A. L. Oldenburg, V. Crecea, E. J. Chaney, and S. A. Boppart, “Optical micro-scale mapping of dynamic biomechanical tissue properties,” Opt. Express16(15), 11052–11065 (2008). [CrossRef] [PubMed]
  39. D. M. de Bruin, R. H. Bremmer, V. M. Kodach, R. de Kinkelder, J. van Marle, T. G. van Leeuwen, and D. J. Faber, “Optical phantoms of varying geometry based on thin building blocks with controlled optical properties,” J. Biomed. Opt.15(2), 025001 (2010). [CrossRef] [PubMed]
  40. A. Grimwood, L. Garcia, J. Bamber, J. Holmes, P. Woolliams, P. Tomlins, and Q. A. Pankhurst, “Elastographic contrast generation in optical coherence tomography from a localized shear stress,” Phys. Med. Biol.55(18), 5515–5528 (2010). [CrossRef] [PubMed]
  41. A. Agrawal, T. J. Pfefer, N. Gilani, and R. Drezek, “Three-dimensional characterization of optical coherence tomography point spread functions with a nanoparticle-embedded phantom,” Opt. Lett.35(13), 2269–2271 (2010). [CrossRef] [PubMed]
  42. C.-E. Bisaillon, M.-M. Lanthier, M. L. Dufour, and G. Lamouche, “Durable coronary artery phantoms for optical coherence tomography,” Proc. SPIE7161, 71612E (2009).
  43. M. Lualdi, A. Colombo, B. Farina, S. Tomatis, and R. Marchesini, “A phantom with tissue-like optical properties in the visible and near infrared for use in photomedicine,” Lasers Surg. Med.28(3), 237–243 (2001). [CrossRef] [PubMed]
  44. D. L. Wise, Encyclopedic Handbook of Biomaterials and Bioengineering: Materials, Volume 1 (Marcel Dekker, 1995).
  45. H. J. van Staveren, C. J. M. Moes, J. van Marie, S. A. Prahl, and M. J. C. van Gemert, “Light scattering in Intralipid-10% in the wavelength range of 400-1100 nm,” Appl. Opt.30(31), 4507–4514 (1991). [CrossRef] [PubMed]
  46. I. Mano, H. Goshima, M. I. Nambu, and M. Iio, “New polyvinyl alcohol gel material for MRI phantoms,” Magn. Reson. Med.3(6), 921–926 (1986). [CrossRef] [PubMed]
  47. C.-E. Bisaillon, G. Campbell, C. De Grandpre, and G. Lamouche, “Multilayer tubular phantoms for optical coherence tomography,” Proc. SPIE7567, 75650I (2010).
  48. C.-E. Bisaillon, G. Campbell, V. Pazos, and G. Lamouche, “Poly (vinyl alcohol) cryogel, multi-layer artery phantoms for optical coherence tomography,” Proc. SPIE7906, 79060J (2011). [CrossRef]
  49. S. Hyon, W. Cha, and Y. Ikada, “Preparation of transparent poly((vinyl alcohol) hydrogel,” Polym. Bull.22(2), 119–122 (1989). [CrossRef]
  50. M. C. Skala, M. J. Crow, A. Wax, and J. A. Izatt, “Photothermal optical coherence tomography of epidermal growth factor receptor in live cells using immunotargeted gold nanospheres,” Nano Lett.8(10), 3461–3467 (2008). [CrossRef] [PubMed]
  51. H. Azarnoush, S. Vergnole, B. Boulet, R. DiRaddo, and G. Lamouche, “Real-time control of angioplasty balloon inflation based on feedback from intravascular optical coherence tomography: preliminary study on an artery phantom,” IEEE Trans. Biomed. Eng.59(3), 697–705 (2012). [CrossRef] [PubMed]
  52. H. Azarnoush, S. Vergnole, B. Boulet, M. Sowa, and G. Lamouche, “Real-time control of angioplasty balloon inflation based on feedback from intravascular optical coherence tomography: experimental validation on an excised heart and a beating heart model,” IEEE Trans. Biomed. Eng.59(5), 1488–1495 (2012). [CrossRef] [PubMed]
  53. W. Jung, J. Kim, M. Jeon, E. J. Chaney, C. N. Stewart, and S. A. Boppart, “Handheld optical coherence tomography scanner for primary care diagnostics,” IEEE Trans. Biomed. Eng.58(3), 741–744 (2011). [CrossRef] [PubMed]
  54. T. A. Krouskop, T. M. Wheeler, F. Kallel, B. S. Garra, and T. Hall, “Elastic moduli of breast and prostate tissues under compression,” Ultrason. Imaging20(4), 260–274 (1998). [PubMed]
  55. A. Samani, J. Bishop, C. Luginbuhl, and D. B. Plewes, “Measuring the elastic modulus of ex vivo small tissue samples,” Phys. Med. Biol.48(14), 2183–2198 (2003). [CrossRef] [PubMed]
  56. P. Wellman, R. D. Howe, E. Dalton, and K. A. Kern, “Breast tissue stiffness in compression is correlated to histological diagnosis,” Harvard BioRobotics Laboratory Technical Report (1999).
  57. N. W. Tschoegl, The Phenomenological Theory of Linear Viscoelastic Behavior: an Introduction (Springer-Verlag Berlin, 1989).
  58. Y. Fung, Biomechanics: Mechanical Properties of Living Tissues (Springer, 1993).
  59. M. F. Insana, C. Pellot-Barakat, M. Sridhar, and K. K. Lindfors, “Viscoelastic imaging of breast tumor microenvironment with ultrasound,” J. Mammary Gland Biol. Neoplasia9(4), 393–404 (2004). [CrossRef] [PubMed]
  60. V. Crecea, A. L. Oldenburg, X. Liang, T. S. Ralston, and S. A. Boppart, “Magnetomotive nanoparticle transducers for optical rheology of viscoelastic materials,” Opt. Express17(25), 23114–23122 (2009). [CrossRef] [PubMed]
  61. S. Jiang, B. W. Pogue, T. O. McBride, M. M. Doyley, S. P. Poplack, and K. D. Paulsen, “Near-infrared breast tomography calibration with optoelastic tissue simulating phantoms,” J. Electron. Imaging12(4), 613 (2003). [CrossRef]
  62. Wacker Silicones, “Processing RTV-2 silicone rubbers,” http://www.wacker.com/cms/media/publications/downloads/6020A_EN.pdf .
  63. F. S. Azar, D. N. Metaxas, and M. D. Schnall, “Methods for modeling and predicting mechanical deformations of the breast under external perturbations,” Med. Image Anal.6(1), 1–27 (2002). [CrossRef] [PubMed]
  64. L. Morriss, A. Wittek, and K. Miller, “Compression testing of very soft biological tissues using semi-confined configuration--a word of caution,” J. Biomech.41(1), 235–238 (2008). [CrossRef] [PubMed]
  65. W. K. Wan, G. Campbell, Z. F. Zhang, A. J. Hui, and D. R. Boughner, “Optimizing the tensile properties of polyvinyl alcohol hydrogel for the construction of a bioprosthetic heart valve stent,” J. Biomed. Mater. Res.63(6), 854–861 (2002). [CrossRef] [PubMed]
  66. V. Pazos, R. Mongrain, and J. C. Tardif, “Polyvinyl alcohol cryogel: optimizing the parameters of cryogenic treatment using hyperelastic models,” J. Mech. Behav. Biomed. Mater.2(5), 542–549 (2009). [CrossRef] [PubMed]
  67. M. Nambu, “Rubber-like poly(viny1 alcohol)) gel,” Kobunshi Ronbunshu47(9), 695–703 (1990) (In Japanese). [CrossRef]
  68. K. C. Chu and B. K. Rutt, “Polyvinyl alcohol cryogel: an ideal phantom material for MR studies of arterial flow and elasticity,” Magn. Reson. Med.37(2), 314–319 (1997). [CrossRef] [PubMed]
  69. G. Beck, N. Akgün, A. Rück, and R. Steiner, “Design and characterisation of a tissue phantom system for optical diagnostics,” Lasers Med. Sci.13(3), 160–171 (1998). [CrossRef]
  70. E. L. Madsen, J. A. Zagzebski, R. A. Banjavie, and R. E. Jutila, “Tissue mimicking materials for ultrasound phantoms,” Med. Phys.5(5), 391–394 (1978). [CrossRef] [PubMed]
  71. J. J. Rownd, E. L. Madsen, J. A. Zagzebski, G. R. Frank, and F. Dong, “Phantoms and automated system for testing the resolution of ultrasound scanners,” Ultrasound Med. Biol.23(2), 245–260 (1997). [CrossRef] [PubMed]
  72. Computerized Imaging Reference Systems, “Ultrasound phantoms for 2D & 3D evaluation” (CIRS 2011). http://www.cirsinc.com/products/modality/92/ultrasound-phantoms-for-2d-and-3d-evaluation/ .
  73. Y. Pan, R. Birngruber, and R. Engelhardt, “Contrast limits of coherence-gated imaging in scattering media,” Appl. Opt.36(13), 2979–2983 (1997). [CrossRef] [PubMed]
  74. N. Iftimia, B. E. Bouma, and G. J. Tearney, “Speckle reduction in optical coherence tomography by “path length encoded” angular compounding,” J. Biomed. Opt.8(2), 260–263 (2003). [CrossRef] [PubMed]
  75. P. H. Tomlins, G. N. Smith, P. D. Woolliams, J. Rasakanthan, and K. Sugden, “Femtosecond laser micro-inscription of optical coherence tomography resolution test artifacts,” Biomed. Opt. Express2(5), 1319–1327 (2011). [CrossRef] [PubMed]
  76. Y. M. Liew, R. A. McLaughlin, F. M. Wood, and D. D. Sampson, “Reduction of image artifacts in three-dimensional optical coherence tomography of skin in vivo,” J. Biomed. Opt.16(11), 116018 (2011). [CrossRef] [PubMed]
  77. A. Curatolo, B. F. Kennedy, and D. D. Sampson, “Structured three-dimensional optical phantom for optical coherence tomography,” Opt. Express19(20), 19480–19485 (2011). [CrossRef] [PubMed]
  78. C.-E. Bisaillon, M. L. Dufour, and G. Lamouche, “Durable phantoms of atherosclerotic arteries for optical coherence tomography,” Proc. SPIE7548, 75483G (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited