OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 3, Iss. 7 — Jul. 1, 2012
  • pp: 1506–1520

Imaging and full-length biometry of the eye during accommodation using spectral domain OCT with an optical switch

Marco Ruggeri, Stephen R. Uhlhorn, Carolina De Freitas, Arthur Ho, Fabrice Manns, and Jean-Marie Parel  »View Author Affiliations

Biomedical Optics Express, Vol. 3, Issue 7, pp. 1506-1520 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (2477 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Abstract: An optical switch was implemented in the reference arm of an extended depth SD-OCT system to sequentially acquire OCT images at different depths into the eye ranging from the cornea to the retina. A custom-made accommodation module was coupled with the delivery of the OCT system to provide controlled step stimuli of accommodation and disaccommodation that preserve ocular alignment. The changes in the lens shape were imaged and ocular distances were dynamically measured during accommodation and disaccommodation. The system is capable of dynamic in vivo imaging of the entire anterior segment and eye-length measurement during accommodation in real-time.

© 2012 OSA

OCIS Codes
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.4500) Medical optics and biotechnology : Optical coherence tomography
(170.4580) Medical optics and biotechnology : Optical diagnostics for medicine
(330.4460) Vision, color, and visual optics : Ophthalmic optics and devices
(330.7322) Vision, color, and visual optics : Visual optics, accommodation

ToC Category:
Ophthalmology Applications

Original Manuscript: April 10, 2012
Revised Manuscript: May 21, 2012
Manuscript Accepted: June 1, 2012
Published: June 6, 2012

Marco Ruggeri, Stephen R. Uhlhorn, Carolina De Freitas, Arthur Ho, Fabrice Manns, and Jean-Marie Parel, "Imaging and full-length biometry of the eye during accommodation using spectral domain OCT with an optical switch," Biomed. Opt. Express 3, 1506-1520 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. M. Schor and S. R. Bharadwaj, “A pulse-step model of accommodation dynamics in the aging eye,” Vision Res.45(10), 1237–1254 (2005). [CrossRef] [PubMed]
  2. J. A. Mordi and K. J. Ciuffreda, “Dynamic aspects of accommodation: age and presbyopia,” Vision Res.44(6), 591–601 (2004). [CrossRef] [PubMed]
  3. A. P. Beers and G. L. Van Der Heijde, “In vivo determination of the biomechanical properties of the component elements of the accommodation mechanism,” Vision Res.34(21), 2897–2905 (1994). [CrossRef] [PubMed]
  4. S. Kasthurirangan, A. S. Vilupuru, and A. Glasser, “Amplitude dependent accommodative dynamics in humans,” Vision Res.43(27), 2945–2956 (2003). [CrossRef] [PubMed]
  5. E. Gambra, Y. Wang, J. Yuan, P. B. Kruger, and S. Marcos, “Dynamic accommodation with simulated targets blurred with high order aberrations,” Vision Res.50(19), 1922–1927 (2010). [CrossRef] [PubMed]
  6. G. Heron and W. N. Charman, “Accommodation as a function of age and the linearity of the response dynamics,” Vision Res.44(27), 3119–3130 (2004). [CrossRef] [PubMed]
  7. H. A. Anderson, A. Glasser, R. E. Manny, and K. K. Stuebing, “Age-related changes in accommodative dynamics from preschool to adulthood,” Invest. Ophthalmol. Vis. Sci.51(1), 614–622 (2010). [CrossRef] [PubMed]
  8. A. P. Beers and G. L. van der Heijde, “Age-related changes in the accommodation mechanism,” Optom. Vis. Sci.73(4), 235–242 (1996). [CrossRef] [PubMed]
  9. G. L. van der Heijde, A. P. Beers, and M. Dubbelman, “Microfluctuations of steady-state accommodation measured with ultrasonography,” Ophthalmic Physiol. Opt.16(3), 216–221 (1996). [CrossRef] [PubMed]
  10. W. Drexler, A. Baumgartner, O. Findl, C. K. Hitzenberger, and A. F. Fercher, “Biometric investigation of changes in the anterior eye segment during accommodation,” Vision Res.37(19), 2789–2800 (1997). [CrossRef] [PubMed]
  11. R. Subramanian, C. Cook, M. Croft, K. L. DePaul, M. Neider, N. J. Ferrier, P. L. Kaufman, and J. F. Koretz, “Unilateral real-time Scheimpflug videography to study accommodation dynamics in human eyes,” Invest. Ophthalmol. Vis. Sci.44, ARVO E-Abstract 240 (2003).
  12. S. R. Uhlhorn, D. Borja, F. Manns, and J. M. Parel, “Refractive index measurement of the isolated crystalline lens using optical coherence tomography,” Vision Res.48(27), 2732–2738 (2008). [CrossRef] [PubMed]
  13. I. Grulkowski, M. Gora, M. Szkulmowski, I. Gorczynska, D. Szlag, S. Marcos, A. Kowalczyk, and M. Wojtkowski, “Anterior segment imaging with Spectral OCT system using a high-speed CMOS camera,” Opt. Express17(6), 4842–4858 (2009). [CrossRef] [PubMed]
  14. J. Jungwirth, B. Baumann, M. Pircher, E. Götzinger, and C. K. Hitzenberger, “Extended in vivo anterior eye-segment imaging with full-range complex spectral domain optical coherence tomography,” J. Biomed. Opt.14(5), 050501 (2009). [CrossRef] [PubMed]
  15. H. Furukawa, H. Hiro-Oka, N. Satoh, R. Yoshimura, D. Choi, M. Nakanishi, A. Igarashi, H. Ishikawa, K. Ohbayashi, and K. Shimizu, “Full-range imaging of eye accommodation by high-speed long-depth range optical frequency domain imaging,” Biomed. Opt. Express1(5), 1491–1501 (2010). [CrossRef] [PubMed]
  16. B. Potsaid, V. Jayaraman, J. G. Fujimoto, J. Jiang, P. J. S. Heim, and A. E. Cable, “MEMS tunable VCSEL light source for ultrahigh speed 60kHz—1MHz axial scan rate and long range centimeter class OCT imaging,” Proc. SPIE8213, 82130M (2012). [CrossRef]
  17. C. Dai, C. Zhou, S. Fan, Z. Chen, X. Chai, Q. Ren, and S. Jiao, “Optical coherence tomography for whole eye segment imaging,” Opt. Express20(6), 6109–6115 (2012). [CrossRef] [PubMed]
  18. A. Dhalla, T. Bustamante, D. Nanikivil, H. Hendargo, R. McNabb, A. Kuo, and J. A. Izatt, “Dual-depth SSOCT for simultaneous complex resolved anterior segment and conventional retinal imaging,” Proc. SPIE8213, 82131G (2012). [CrossRef]
  19. G. Häusler and M. W. Lindner, “‘Coherence radar’ and ‘spectral radar’—new tools for dermatological diagnosis,” J. Biomed. Opt.3(1), 21–31 (1998). [CrossRef]
  20. H. Lim, M. Mujat, C. Kerbage, E. C. Lee, Y. Chen, T. C. Chen, and J. F. de Boer, “High-speed imaging of human retina in vivo with swept-source optical coherence tomography,” Opt. Express14(26), 12902–12908 (2006). [CrossRef] [PubMed]
  21. M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt.7(3), 457–463 (2002). [CrossRef] [PubMed]
  22. C. Dorrer, N. Belabas, J. P. Likforman, and M. Joffre, “Spectral resolution and sampling issues in Fourier transform spectral interferometry,” J. Opt. Soc. Am. B17(10), 1795–1802 (2000). [CrossRef]
  23. H. Wang, Y. Pan, and A. M. Rollins, “Extending the effective imaging range of Fourier-domain optical coherence tomography using a fiber optic switch,” Opt. Lett.33(22), 2632–2634 (2008). [CrossRef] [PubMed]
  24. American National Standards Institute, Safe Use of Lasers, ANSI-Z136.1 (ANSI, 1993).
  25. D. A. Atchison, A. Bradley, L. N. Thibos, and G. Smith, “Useful variations of the Badal optometer,” Optom. Vis. Sci.72(4), 279–284 (1995). [CrossRef] [PubMed]
  26. N. C. Strang, M. Day, L. S. Gray, and D. Seidel, “Accommodation steps, target spatial frequency and refractive error,” Ophthalmic Physiol. Opt.31(5), 444–455 (2011). [CrossRef] [PubMed]
  27. F. S. Said and R. A. Weale, “The variation with age of the spectral transmissivity of the living human crystalline lens,” Gerontologia3(4), 213–231 (1959). [CrossRef] [PubMed]
  28. S. R. Uhlhorn, F. Manns, H. Tahi, R. O. Pascal, and J. M. Parel, “Corneal group refractive index measurement using low-coherence interferometry,” Proc. SPIE3246, 14–21 (1998). [CrossRef]
  29. D. A. Atchison and G. Smith, “Chromatic dispersion of the ocular media of human eyes,” J. Opt. Soc. Am. A22(1), 29–37 (2005). [CrossRef]
  30. N. Nassif, B. Cense, B. Hyle Park, S. H. Yun, T. C. Chen, B. E. Bouma, G. J. Tearney, and J. F. de Boer, “In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography,” Opt. Lett.29(5), 480–482 (2004). [CrossRef] [PubMed]
  31. M. Dubbelman, G. L. Van der Heijde, and H. A. Weeber, “Change in shape of the aging human crystalline lens with accommodation,” Vision Res.45(1), 117–132 (2005). [CrossRef] [PubMed]
  32. J. M. Schmitt, S. L. Lee, and K. M. Yung, “An optical coherence microscope with enhanced resolving power in thick tissue,” Opt. Commun.142(4-6), 203–207 (1997). [CrossRef]
  33. F. Lexer, C. K. Hitzenberger, W. Drexler, S. Molebny, H. Sattmann, M. Sticker, and A. F. Fercher, “Dynamic coherent focus OCT with depth independent transversal resolution,” J. Mod. Opt.46, 541–553 (1999).
  34. W. Drexler, U. Morgner, F. X. Kärtner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, “In vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett.24(17), 1221–1223 (1999). [CrossRef] [PubMed]
  35. B. Qi, A. P. Himmer, L. M. Gordon, X. D. Yang, L. D. Dickensheets, and I. A. Vitkin, “Dynamic focus control in high-speed optical coherence tomography based on a microelectromechanical mirror,” Opt. Commun.232(1-6), 123–128 (2004). [CrossRef]
  36. J. Holmes, S. Hattersley, N. Stone, F. Bazant-Hegemark, and H. Barr, “Multi-channel Fourier domain OCT system with superior lateral resolution for biomedical applications,” Proc. SPIE6847, 68470O, 68470O-9 (2008). [CrossRef]
  37. C. Zhou, J. Wang, and S. Jiao, “Dual channel dual focus optical coherence tomography for imaging accommodation of the eye,” Opt. Express17(11), 8947–8955 (2009). [CrossRef] [PubMed]
  38. A. G. Bennett, “A method of determining the equivalent powers of the eye and its crystalline lens without resort to phakometry,” Ophthalmic Physiol. Opt.8(1), 53–59 (1988). [CrossRef] [PubMed]
  39. M. Dubbelman and G. L. Van der Heijde, “The shape of the aging human lens: curvature, equivalent refractive index and the lens paradox,” Vision Res.41(14), 1867–1877 (2001). [CrossRef] [PubMed]
  40. C. P. de Freitas, M. Ruggeri, S. Uhlhorn, F. Manns, and J. M. Parel, “Refractive index of the in vivo human crystalline lens measured using whole-eye optical coherence tomography,” Invest Ophthalmol Vis Sci53, E-Abstract 1341 (2012).
  41. S. Ortiz, D. Siedlecki, I. Grulkowski, L. Remon, D. Pascual, M. Wojtkowski, and S. Marcos, “Optical distortion correction in optical coherence tomography for quantitative ocular anterior segment by three-dimensional imaging,” Opt. Express18(3), 2782–2796 (2010). [CrossRef] [PubMed]
  42. A. Podoleanu, I. Charalambous, L. Plesea, A. Dogariu, and R. Rosen, “Correction of distortions in optical coherence tomography imaging of the eye,” Phys. Med. Biol.49(7), 1277–1294 (2004). [CrossRef] [PubMed]
  43. R. J. Zawadzki, C. Leisser, R. Leitgeb, M. Pircher, and A. F. Fercher, “Three-dimensional ophthalmic optical coherence tomography with a refraction correction algorithm,” Proc. SPIE5140, 20–27 (2003). [CrossRef]
  44. V. Westphal, A. Rollins, S. Radhakrishnan, and J. Izatt, “Correction of geometric and refractive image distortions in optical coherence tomography applying Fermat’s principle,” Opt. Express10(9), 397–404 (2002). [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: AVI (2668 KB)     
» Media 2: AVI (2711 KB)     
» Media 3: AVI (931 KB)     
» Media 4: AVI (931 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited