OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 3, Iss. 7 — Jul. 1, 2012
  • pp: 1565–1578

Enabling freehand lateral scanning of optical coherence tomography needle probes with a magnetic tracking system

Boon Y. Yeo, Robert A. McLaughlin, Rodney W. Kirk, and David D. Sampson  »View Author Affiliations

Biomedical Optics Express, Vol. 3, Issue 7, pp. 1565-1578 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1993 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a high-resolution three-dimensional position tracking method that allows an optical coherence tomography (OCT) needle probe to be scanned laterally by hand, providing the high degree of flexibility and freedom required in clinical usage. The method is based on a magnetic tracking system, which is augmented by cross-correlation-based resampling and a two-stage moving window average algorithm to improve upon the tracker's limited intrinsic spatial resolution, achieving 18 µm RMS position accuracy. A proof-of-principle system was developed, with successful image reconstruction demonstrated on phantoms and on ex vivo human breast tissue validated against histology. This freehand scanning method could contribute toward clinical implementation of OCT needle imaging.

© 2012 OSA

OCIS Codes
(150.6910) Machine vision : Three-dimensional sensing
(170.4500) Medical optics and biotechnology : Optical coherence tomography
(330.4150) Vision, color, and visual optics : Motion detection

ToC Category:
Optical Coherence Tomography

Original Manuscript: April 5, 2012
Revised Manuscript: May 24, 2012
Manuscript Accepted: May 28, 2012
Published: June 8, 2012

Boon Y. Yeo, Robert A. McLaughlin, Rodney W. Kirk, and David D. Sampson, "Enabling freehand lateral scanning of optical coherence tomography needle probes with a magnetic tracking system," Biomed. Opt. Express 3, 1565-1578 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. E. Bouma and G. J. Tearney, “Power-efficient nonreciprocal interferometer and linear-scanning fiber-optic catheter for optical coherence tomography,” Opt. Lett.24(8), 531–533 (1999). [CrossRef] [PubMed]
  2. P. R. Herz, Y. Chen, A. D. Aguirre, K. Schneider, P. Hsiung, J. G. Fujimoto, K. Madden, J. Schmitt, J. Goodnow, and C. Petersen, “Micromotor endoscope catheter for in vivo, ultrahigh-resolution optical coherence tomography,” Opt. Lett.29(19), 2261–2263 (2004). [CrossRef] [PubMed]
  3. P. H. Tran, D. S. Mukai, M. Brenner, and Z. Chen, “In vivo endoscopic optical coherence tomography by use of a rotational microelectromechanical system probe,” Opt. Lett.29(11), 1236–1238 (2004). [CrossRef] [PubMed]
  4. R. A. McLaughlin, J. P. Williamson, M. J. Phillips, J. J. Armstrong, S. Becker, D. R. Hillman, P. R. Eastwood, and D. D. Sampson, “Applying anatomical optical coherence tomography to quantitative 3D imaging of the lower airway,” Opt. Express16(22), 17521–17529 (2008). [CrossRef] [PubMed]
  5. J. G. Fujimoto, S. A. Boppart, G. J. Tearney, B. E. Bouma, C. Pitris, and M. E. Brezinski, “High resolution in vivo intra-arterial imaging with optical coherence tomography,” Heart82(2), 128–133 (1999). [PubMed]
  6. B. E. Bouma, G. J. Tearney, H. Yabushita, M. Shishkov, C. R. Kauffman, D. DeJoseph Gauthier, B. D. MacNeill, S. L. Houser, H. T. Aretz, E. F. Halpern, and I. K. Jang, “Evaluation of intracoronary stenting by intravascular optical coherence tomography,” Heart89(3), 317–320 (2003). [CrossRef] [PubMed]
  7. I. K. Jang, G. J. Tearney, B. MacNeill, M. Takano, F. Moselewski, N. Iftima, M. Shishkov, S. Houser, H. T. Aretz, E. F. Halpern, and B. E. Bouma, “In vivo characterization of coronary atherosclerotic plaque by use of optical coherence tomography,” Circulation111(12), 1551–1555 (2005). [CrossRef] [PubMed]
  8. J. Yin, H. C. Yang, X. Li, J. Zhang, Q. Zhou, C. Hu, K. K. Shung, and Z. Chen, “Integrated intravascular optical coherence tomography ultrasound imaging system,” J. Biomed. Opt.15(1), 010512 (2010). [CrossRef] [PubMed]
  9. X. D. Li, C. Chudoba, T. Ko, C. Pitris, and J. G. Fujimoto, “Imaging needle for optical coherence tomography,” Opt. Lett.25(20), 1520–1522 (2000). [CrossRef] [PubMed]
  10. V. X. D. Yang, Y. X. Mao, N. Munce, B. Standish, W. Kucharczyk, N. E. Marcon, B. C. Wilson, and I. A. Vitkin, “Interstitial Doppler optical coherence tomography,” Opt. Lett.30(14), 1791–1793 (2005). [CrossRef] [PubMed]
  11. Y. Wu, J. Xi, L. Huo, J. Padvorac, E. J. Shin, S. A. Giday, A. A. Lennon, M. I. F. Canto, J. H. Hwang, and X. Li, “Robust high-resolution fine OCT needle for side-viewing interstitial tissue imaging,” IEEE J. Sel. Top. Quantum Electron.16(4), 863–869 (2010). [CrossRef]
  12. D. Lorenser, X. Yang, R. W. Kirk, B. C. Quirk, R. A. McLaughlin, and D. D. Sampson, “Ultrathin side-viewing needle probe for optical coherence tomography,” Opt. Lett.36(19), 3894–3896 (2011). [CrossRef] [PubMed]
  13. B. C. Quirk, R. A. McLaughlin, A. Curatolo, R. W. Kirk, P. B. Noble, and D. D. Sampson, “In situ imaging of lung alveoli with an optical coherence tomography needle probe,” J. Biomed. Opt.16(3), 036009 (2011). [CrossRef] [PubMed]
  14. N. V. Iftimia, M. Mujat, T. Ustun, R. D. Ferguson, V. Danthu, and D. X. Hammer, “Spectral-domain low coherence interferometry/optical coherence tomography system for fine needle breast biopsy guidance,” Rev. Sci. Instrum.80(2), 024302 (2009). [CrossRef] [PubMed]
  15. R. A. McLaughlin, B. C. Quirk, A. Curatolo, R. W. Kirk, L. Scolaro, D. Lorenser, P. D. Robbins, B. A. Wood, C. M. Saunders, and D. D. Sampson, “Imaging of breast cancer with optical coherence tomography needle probes: feasibility and initial results,” IEEE J. Sel. Top. Quantum Electron. (2011), early access, http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6007038 .
  16. A. Curatolo, R. A. McLaughlin, B. C. Quirk, R. W. Kirk, A. G. Bourke, B. A. Wood, P. D. Robbins, C. M. Saunders, and D. D. Sampson, “Ultrasound-guided optical coherence tomography needle probe for the assessment of breast cancer tumor margins,” AJR Am. J. Roentgenol. (to be published).
  17. J. Ren, J. G. Wu, E. J. McDowell, and C. H. Yang, “Manual-scanning optical coherence tomography probe based on position tracking,” Opt. Lett.34(21), 3400–3402 (2009). [CrossRef] [PubMed]
  18. A. Ahmad, S. G. Adie, E. J. Chaney, U. Sharma, and S. A. Boppart, “Cross-correlation-based image acquisition technique for manually-scanned optical coherence tomography,” Opt. Express17(10), 8125–8136 (2009). [CrossRef] [PubMed]
  19. N. Weiss, T. G. van Leeuwen, and J. Kalkman, “Doppler-based lateral motion tracking for optical coherence tomography,” Opt. Lett. doc. ID 164900 (posted 19 April 2012, to be published). [PubMed]
  20. D. F. Leotta, P. R. Detmer, and R. W. Martin, “Performance of a miniature magnetic position sensor for three-dimensional ultrasound imaging,” Ultrasound Med. Biol.23(4), 597–609 (1997). [CrossRef] [PubMed]
  21. O. Suess, S. Suess, S. Mularski, B. Kühn, T. Picht, S. Hammersen, R. Stendel, M. Brock, and T. Kombos, “Study on the clinical application of pulsed DC magnetic technology for tracking of intraoperative head motion during frameless stereotaxy,” Head Face Med.2(1), 10 (2006). [CrossRef] [PubMed]
  22. C. A. Buckner, A. Venkatesan, J. K. Locklin, and B. J. Wood, “Real-time sonography with electromagnetic tracking navigation for biopsy of a hepatic neoplasm seen only on arterial phase computed tomography,” J. Ultrasound Med.30(2), 253–256 (2011). [PubMed]
  23. J. Kuipers, “Object tracking and orientation determination means, system and process,” U. S. Patent 3,868,565 (Feb. 25, 1975).
  24. F. H. Raab, E. B. Blood, T. O. Steiner, and H. R. Jones, “Magnetic position and orientation tracking system,” IEEE Trans. Aerosp. Electron. Syst.AES-15(5), 709–718 (1979). [CrossRef]
  25. B. Lau, R. A. McLaughlin, A. Curatolo, R. W. Kirk, D. K. Gerstmann, and D. D. Sampson, “Imaging true 3D endoscopic anatomy by incorporating magnetic tracking with optical coherence tomography: proof-of-principle for airways,” Opt. Express18(26), 27173–27180 (2010). [CrossRef] [PubMed]
  26. R. W. Prager, A. Gee, and L. Berman, “Stradx: real-time acquisition and visualization of freehand three-dimensional ultrasound,” Med. Image Anal.3(2), 129–140 (1999). [CrossRef] [PubMed]
  27. H. Boonstra, J. W. Oosterhuis, A. M. Oosterhuis, and G. J. Fleuren, “Cervical tissue shrinkage by formaldehyde fixation, paraffin wax embedding, section cutting and mounting,” Virchows Arch. A Pathol. Anat. Histopathol.402(2), 195–201 (1983). [CrossRef] [PubMed]
  28. B. Pritt, J. J. Tessitore, D. L. Weaver, and H. Blaszyk, “The effect of tissue fixation and processing on breast cancer size,” Hum. Pathol.36(7), 756–760 (2005). [CrossRef] [PubMed]
  29. B. H. Yeap, S. Muniandy, S. K. Lee, S. Sabaratnam, and M. Singh, “Specimen shrinkage and its influence on margin assessment in breast cancer,” Asian J. Surg.30(3), 183–187 (2007). [CrossRef] [PubMed]
  30. B. T. Sitzman and D. R. Uncles, “The effects of needle type, gauge, and tip bend on spinal needle deflection,” Anesth. Analg.82(2), 297–301 (1996). [PubMed]
  31. R. J. Webster, J. S. Kim, N. J. Cowan, G. S. Chirikjian, and A. M. Okamura, “Nonholonomic modeling of needle steering,” Int. J. Robot. Res.25(5-6), 509–525 (2006). [CrossRef]
  32. N. Abolhassani, R. V. Patel, and F. Ayazi, “Minimization of needle deflection in robot-assisted percutaneous therapy,” Int. J. Med. Robot.3(2), 140–148 (2007). [CrossRef] [PubMed]
  33. P. M. Bloomfield, T. J. Spinks, J. Reed, L. Schnorr, A. M. Westrip, L. Livieratos, R. Fulton, and T. Jones, “The design and implementation of a motion correction scheme for neurological PET,” Phys. Med. Biol.48(8), 959–978 (2003). [CrossRef] [PubMed]
  34. E. B. Blood, “Device for quantitatively measuring the relative position and orientation of two bodies in the presence of metals utilizing direct current magnetic fields,” U. S. Patent 4,945,305 (July 31, 1990).
  35. M. A. Nixon, B. C. McCallum, W. R. Fright, and N. B. Price, “The effects of metals and interfering fields on electromagnetic trackers,” Presence (Camb. Mass.)7(2), 204–218 (1998). [CrossRef]
  36. W. Birkfellner, F. Watzinger, F. Wanschitz, R. Ewers, and H. Bergmann, “Calibration of tracking systems in a surgical environment,” IEEE Trans. Med. Imaging17(5), 737–742 (1998). [CrossRef] [PubMed]
  37. V. Kindratenko, “A survey of electromagnetic position tracker calibration techniques,” Virtual Real. (Walth. Cross)5(3), 169–182 (2000). [CrossRef]
  38. W. Ashe, “Magnetic position measurement system with field containment means,” U. S. Patent 6,528,991 B2 (March 4, 2003).
  39. D. Stoianovici, A. Patriciu, D. Petrisor, D. Mazilu, and L. Kavoussi, “A new type of motor: pneumatic step motor,” IEEE/ASME Trans. Mechatron.12(1), 98–106 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

Supplementary Material

» Media 1: MOV (1969 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited