OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 3, Iss. 8 — Aug. 1, 2012
  • pp: 1891–1897

Trapping and rotating microparticles and bacteria with moiré-based optical propelling beams

Peng Zhang, Daniel Hernandez, Drake Cannan, Yi Hu, Shima Fardad, Simon Huang, Joseph C. Chen, Demetrios N. Christodoulides, and Zhigang Chen  »View Author Affiliations


Biomedical Optics Express, Vol. 3, Issue 8, pp. 1891-1897 (2012)
http://dx.doi.org/10.1364/BOE.3.001891


View Full Text Article

Enhanced HTML    Acrobat PDF (1677 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose and demonstrate trapping and rotation of microparticles and biological samples with a moiré-based rotating optical tweezers. We show that polystyrene beads, as well as Escherichia coli cells, can be rotated with ease, while the speed and direction of rotation are fully controllable by a computer, obviating mechanical movement or phase-sensitive interference. Furthermore, we demonstrate experimentally the generation of white-light propelling beams and arrays, and discuss the possibility of optical tweezing and particle micro-manipulation based on incoherent white-light rotating patterns.

© 2012 OSA

OCIS Codes
(120.4120) Instrumentation, measurement, and metrology : Moire' techniques
(170.4520) Medical optics and biotechnology : Optical confinement and manipulation
(350.4855) Other areas of optics : Optical tweezers or optical manipulation

ToC Category:
Optical Traps, Manipulation, and Tracking

History
Original Manuscript: May 22, 2012
Revised Manuscript: July 4, 2012
Manuscript Accepted: July 15, 2012
Published: July 18, 2012

Citation
Peng Zhang, Daniel Hernandez, Drake Cannan, Yi Hu, Shima Fardad, Simon Huang, Joseph C. Chen, Demetrios N. Christodoulides, and Zhigang Chen, "Trapping and rotating microparticles and bacteria with moiré-based optical propelling beams," Biomed. Opt. Express 3, 1891-1897 (2012)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-3-8-1891


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett.24(4), 156–159 (1970). [CrossRef]
  2. A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science235(4795), 1517–1520 (1987). [CrossRef] [PubMed]
  3. D. G. Grier, “A revolution in optical manipulation,” Nature424(6950), 810–816 (2003). [CrossRef] [PubMed]
  4. J. R. Moffitt, Y. R. Chemla, S. B. Smith, and C. Bustamante, “Recent advances in optical tweezers,” Annu. Rev. Biochem.77(1), 205–228 (2008). [CrossRef] [PubMed]
  5. D. McGloin and J. P. Reid, “40 years of optical manipulation,” Opt. Photonics News21(3), 20–26 (2010). [CrossRef]
  6. H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett.75(5), 826–829 (1995). [CrossRef] [PubMed]
  7. M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature394(6691), 348–350 (1998). [CrossRef]
  8. J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun.207(1-6), 169–175 (2002). [CrossRef]
  9. J. E. Curtis and D. G. Grier, “Structure of optical vortices,” Phys. Rev. Lett.90(13), 133901 (2003). [CrossRef] [PubMed]
  10. Z. Bryant, M. D. Stone, J. Gore, S. B. Smith, N. R. Cozzarelli, and C. Bustamante, “Structural transitions and elasticity from torque measurements on DNA,” Nature424(6946), 338–341 (2003). [CrossRef] [PubMed]
  11. L. Sacconi, G. Romano, R. Ballerini, M. Capitanio, M. De Pas, M. Giuntini, D. Dunlap, L. Finzi, and F. S. Pavone, “Three-dimensional magneto-optic trap for micro-object manipulation,” Opt. Lett.26(17), 1359–1361 (2001). [CrossRef] [PubMed]
  12. S. Sato, M. Ishigure, and H. Inaba, “Optical trapping and rotational manipulation of microscopic particles and biological cells using higher-order mode Nd: YAG laserbeams,” Electron. Lett.27(20), 1831–1832 (1991). [CrossRef]
  13. A. T. O’Neil and M. J. Padgett, “Rotational control within optical tweezers by use of a rotating aperture,” Opt. Lett.27(9), 743–745 (2002). [CrossRef] [PubMed]
  14. R. Dasgupta, S. K. Mohanty, and P. K. Gupta, “Controlled rotation of biological microscopic objects using optical line tweezers,” Biotechnol. Lett.25(19), 1625–1628 (2003). [CrossRef] [PubMed]
  15. L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, and K. Dholakia, “Controlled rotation of optically trapped microscopic particles,” Science292(5518), 912–914 (2001). [CrossRef] [PubMed]
  16. M. P. MacDonald, L. Paterson, K. Volke-Sepulveda, J. Arlt, W. Sibbett, and K. Dholakia, “Creation and manipulation of three-dimensional optically trapped structures,” Science296(5570), 1101–1103 (2002). [CrossRef] [PubMed]
  17. M. P. MacDonald, K. Volke-Sepulveda, L. Paterson, J. Arlt, W. Sibbett, and K. Dholakia, “Revolving interference patterns for the rotation of optically trapped particles,” Opt. Commun.201(1-3), 21–28 (2002). [CrossRef]
  18. M. K. Kreysing, T. Kieβling, A. Fritsch, C. Dietrich, J. R. Guck, and J. A. Käs, “The optical cell rotator,” Opt. Express16(21), 16984–16992 (2008). [CrossRef] [PubMed]
  19. F. W. Sheu, T. K. Lan, Y. C. Lin, S. Chen, and C. Ay, “Stable trapping and manually controlled rotation of an asymmetric or birefringent microparticle using dual-mode split-beam optical tweezers,” Opt. Express18(14), 14724–14729 (2010). [CrossRef] [PubMed]
  20. P. Zhang, S. Huang, Y. Hu, D. Hernandez, and Z. Chen, “Generation and nonlinear self-trapping of optical propelling beams,” Opt. Lett.35(18), 3129–3131 (2010). [CrossRef] [PubMed]
  21. P. Zhang, Z. Zhang, J. Prakash, S. Huang, D. Hernandez, M. Salazar, D. N. Christodoulides, and Z. Chen, “Trapping and transporting aerosols with a single optical bottle beam generated by moiré techniques,” Opt. Lett.36(8), 1491–1493 (2011). [CrossRef] [PubMed]
  22. P. Zhang, J. Prakash, Z. Zhang, M. S. Mills, N. K. Efremidis, D. N. Christodoulides, and Z. Chen, “Trapping and guiding microparticles with morphing autofocusing Airy beams,” Opt. Lett.36(15), 2883–2885 (2011). [CrossRef] [PubMed]
  23. W. M. Lee and X.-C. Yuan, “Experimental observation of 'pure helical phase' interference using moiré fringes generated from holograms with dislocations,” J. Opt. A, Pure Appl. Opt.6(5), 482–485 (2004). [CrossRef]
  24. E. R. Dufresne and D. G. Grier, “Optical tweezer arrays and optical substrates created with diffractive optics,” Rev. Sci. Instrum.69(5), 1974–1977 (1998). [CrossRef]
  25. P. Li, K. Shi, and Z. Liu, “Manipulation and spectroscopy of a single particle by use of white-light optical tweezers,” Opt. Lett.30(2), 156–158 (2005). [CrossRef] [PubMed]
  26. K. W. Madison, F. Chevy, W. Wohlleben, and J. Dalibard, “Vortex formation in a stirred bose-einstein condensate,” Phys. Rev. Lett.84(5), 806–809 (2000). [CrossRef] [PubMed]
  27. Y. Lamhot, A. Barak, C. Rotschild, M. Segev, M. Saraf, E. Lifshitz, A. Marmur, R. El-Ganainy, and D. N. Christodoulides, “Optical control of thermocapillary effects in complex nanofluids,” Phys. Rev. Lett.103(26), 264503 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: AVI (6133 KB)     
» Media 2: AVI (2375 KB)     
» Media 3: AVI (1869 KB)     
» Media 4: AVI (1461 KB)     
» Media 5: AVI (4094 KB)     
» Media 6: AVI (4348 KB)     
» Media 7: AVI (1620 KB)     
» Media 8: AVI (5420 KB)     
» Media 9: AVI (6082 KB)     
» Media 10: AVI (5622 KB)     
» Media 11: AVI (3491 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited