OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 3, Iss. 9 — Sep. 1, 2012
  • pp: 2021–2035

Quantifying collagen structure in breast biopsies using second-harmonic generation imaging

Raghu Ambekar, Tung-Yuen Lau, Michael Walsh, Rohit Bhargava, and Kimani C. Toussaint, Jr.  »View Author Affiliations


Biomedical Optics Express, Vol. 3, Issue 9, pp. 2021-2035 (2012)
http://dx.doi.org/10.1364/BOE.3.002021


View Full Text Article

Enhanced HTML    Acrobat PDF (2558 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Quantitative second-harmonic generation imaging is employed to assess stromal collagen in normal, hyperplastic, dysplastic, and malignant breast tissues. The cellular scale organization is quantified using Fourier transform-second harmonic generation imaging (FT-SHG), while the molecular scale organization is quantified using polarization-resolved second-harmonic generation measurements (P-SHG). In the case of FT-SHG, we apply a parameter that quantifies the regularity in collagen fiber orientation and find that malignant tissue contains locally aligned fibers compared to other tissue conditions. Alternatively, using P-SHG we calculate the ratio of tensor elements (d15/d31, d22/d31, and d33/d31) of the second-order susceptibility χ2 for collagen fibers in breast biopsies. In particular, d15/d31 shows potential differences across the tissue pathology. We also find that trigonal symmetry (3m) is a more appropriate model to describe collagen fibers in malignant tissues as opposed to the conventionally used hexagonal symmetry (C6). This novel method of targeting collagen fibers using a combination of two quantitative SHG techniques, FT-SHG and P-SHG, holds promise for breast tissue analysis and applications to characterizing cancer in a manner that is compatible with clinical practice.

© 2012 OSA

OCIS Codes
(100.2960) Image processing : Image analysis
(180.4315) Microscopy : Nonlinear microscopy

ToC Category:
Microscopy

History
Original Manuscript: May 21, 2012
Revised Manuscript: July 19, 2012
Manuscript Accepted: August 4, 2012
Published: August 7, 2012

Citation
Raghu Ambekar, Tung-Yuen Lau, Michael Walsh, Rohit Bhargava, and Kimani C. Toussaint, "Quantifying collagen structure in breast biopsies using second-harmonic generation imaging," Biomed. Opt. Express 3, 2021-2035 (2012)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-3-9-2021


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Jemal, F. Bray, M. M. Center, J. Ferlay, E. Ward, and D. Forman, “Global cancer statistics,” CA Cancer J. Clin.61(2), 69–90 (2011). [CrossRef] [PubMed]
  2. “Cancer Facts & Figures—2012American Cancer Society, 2012).
  3. B. N. Datta, Textbook of Pathology (Jaypee Brothers Medical, 2008).
  4. S. Srivastava, Molecular Pathology of Early Cancer (IOS, 1998).
  5. L. A. Liotta, C. N. Rao, and S. H. Barsky, “Tumor invasion and the extracellular matrix,” Lab. Invest.49(6), 636–649 (1983). [PubMed]
  6. D. Radisky, J. Muschler, and M. J. Bissell, “Order and disorder: the role of extracellular matrix in epithelial cancer,” Cancer Invest.20(1), 139–153 (2002). [CrossRef] [PubMed]
  7. J. E. Ferguson, A. M. Schor, A. Howell, and M. W. J. Ferguson, “Changes in the extracellular matrix of the normal human breast during the menstrual cycle,” Cell Tissue Res.268(1), 167–177 (1992). [CrossRef] [PubMed]
  8. I. Stamenkovic, “Extracellular matrix remodelling: the role of matrix metalloproteinases,” J. Pathol.200(4), 448–464 (2003). [CrossRef] [PubMed]
  9. O. W. Petersen, H. L. Nielsen, T. Gudjonsson, R. Villadsen, F. Rank, E. Niebuhr, M. J. Bissell, and L. Rønnov-Jessen, “Epithelial to mesenchymal transition in human breast cancer can provide a nonmalignant stroma,” Am. J. Pathol.162(2), 391–402 (2003). [CrossRef] [PubMed]
  10. S. E. Holton, M. J. Walsh, A. Kajdacsy-Balla, and R. Bhargava, “Label-free characterization of cancer-activated fibroblasts using infrared spectroscopic imaging,” Biophys. J.101(6), 1513–1521 (2011). [CrossRef] [PubMed]
  11. S. E. Holton, M. J. Walsh, and R. Bhargava, “Subcellular localization of early biochemical transformations in cancer-activated fibroblasts using infrared spectroscopic imaging,” Analyst (Lond.)136(14), 2953–2958 (2011). [CrossRef] [PubMed]
  12. J. T. Erler and V. M. Weaver, “Three-dimensional context regulation of metastasis,” Clin. Exp. Metastasis26(1), 35–49 (2009). [CrossRef] [PubMed]
  13. J. Helleman, M. P. Jansen, K. Ruigrok-Ritstier, I. L. van Staveren, M. P. Look, M. E. Meijer-van Gelder, A. M. Sieuwerts, J. G. M. Klijn, S. Sleijfer, J. A. Foekens, and E. M. Berns, “Association of an extracellular matrix gene cluster with breast cancer prognosis and endocrine therapy response,” Clin. Cancer Res.14(17), 5555–5564 (2008). [CrossRef] [PubMed]
  14. D. Barkan, J. E. Green, and A. F. Chambers, “Extracellular matrix: a gatekeeper in the transition from dormancy to metastatic growth,” Eur. J. Cancer46(7), 1181–1188 (2010). [CrossRef] [PubMed]
  15. P. P. Provenzano, K. W. Eliceiri, J. M. Campbell, D. R. Inman, J. G. White, and P. J. Keely, “Collagen reorganization at the tumor-stromal interface facilitates local invasion,” BMC Med.4(1), 38 (2006). [CrossRef] [PubMed]
  16. P. P. Provenzano, D. R. Inman, K. W. Eliceiri, J. G. Knittel, L. Yan, C. T. Rueden, J. G. White, and P. J. Keely, “Collagen density promotes mammary tumor initiation and progression,” BMC Med.6(1), 11 (2008). [CrossRef] [PubMed]
  17. C. Thrasivoulou, G. Virich, T. Krenacs, I. Korom, and D. L. Becker, “Optical delineation of human malignant melanoma using second harmonic imaging of collagen,” Biomed. Opt. Express2(5), 1282–1295 (2011). [CrossRef] [PubMed]
  18. W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, and W. W. Webb, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” Proc. Natl. Acad. Sci. U.S.A.100(12), 7075–7080 (2003). [CrossRef] [PubMed]
  19. P. J. Campagnola and L. M. Loew, “Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms,” Nat. Biotechnol.21(11), 1356–1360 (2003). [CrossRef] [PubMed]
  20. A. Zoumi, A. Yeh, and B. J. Tromberg, “Imaging cells and extracellular matrix in vivo by using second-harmonic generation and two-photon excited fluorescence,” Proc. Natl. Acad. Sci. U.S.A.99(17), 11014–11019 (2002). [CrossRef] [PubMed]
  21. I. Freund, M. Deutsch, and A. Sprecher, “Connective tissue polarity. Optical second-harmonic microscopy, crossed-beam summation, and small-angle scattering in rat-tail tendon,” Biophys. J.50(4), 693–712 (1986). [CrossRef] [PubMed]
  22. G. Cox, E. Kable, A. Jones, I. K. Fraser, F. Manconi, and M. D. Gorrell, “3-dimensional imaging of collagen using second harmonic generation,” J. Struct. Biol.141(1), 53–62 (2003). [CrossRef] [PubMed]
  23. W. L. Chen, T. H. Li, P. J. Su, C. K. Chou, P. T. Fwu, S. J. Lin, D. Kim, P. T. C. So, and C. Y. Dong, “Second harmonic generation chi tensor microscopy for tissue imaging,” Appl. Phys. Lett.94, 3 (2009).
  24. F. Tiaho, G. Recher, and D. Rouède, “Estimation of helical angles of myosin and collagen by second harmonic generation imaging microscopy,” Opt. Express15(19), 12286–12295 (2007). [CrossRef] [PubMed]
  25. R. M. Williams, W. R. Zipfel, and W. W. Webb, “Interpreting second-harmonic generation images of collagen I fibrils,” Biophys. J.88(2), 1377–1386 (2005). [CrossRef] [PubMed]
  26. R. Ambekar, M. Chittenden, I. Jasiuk, and K. C. Toussaint., “Quantitative second-harmonic generation microscopy for imaging porcine cortical bone: comparison to SEM and its potential to investigate age-related changes,” Bone50(3), 643–650 (2012). [CrossRef] [PubMed]
  27. R. A. Rao, M. R. Mehta, S. Leithem, and K. C. Toussaint., “Quantitative analysis of forward and backward second-harmonic images of collagen fibers using Fourier transform second-harmonic-generation microscopy,” Opt. Lett.34(24), 3779–3781 (2009). [CrossRef] [PubMed]
  28. R. A. Rao, M. R. Mehta, and K. C. Toussaint., “Fourier transform-second-harmonic generation imaging of biological tissues,” Opt. Express17(17), 14534–14542 (2009). [CrossRef] [PubMed]
  29. M. Sivaguru, S. Durgam, R. Ambekar, D. Luedtke, G. Fried, A. Stewart, and K. C. Toussaint., “Quantitative analysis of collagen fiber organization in injured tendons using Fourier transform-second harmonic generation imaging,” Opt. Express18(24), 24983–24993 (2010). [CrossRef] [PubMed]
  30. P. J. Su, W. L. Chen, J. B. Hong, T. H. Li, R. J. Wu, C. K. Chou, S. J. Chen, C. Hu, S. J. Lin, and C. Y. Dong, “Discrimination of collagen in normal and pathological skin dermis through second-order susceptibility microscopy,” Opt. Express17(13), 11161–11171 (2009). [CrossRef] [PubMed]
  31. C. Odin, T. Guilbert, A. Alkilani, O. P. Boryskina, V. Fleury, and Y. Le Grand, “Collagen and myosin characterization by orientation field second harmonic microscopy,” Opt. Express16(20), 16151–16165 (2008). [CrossRef] [PubMed]
  32. S. Psilodimitrakopoulos, D. Artigas, G. Soria, I. Amat-Roldan, A. M. Planas, and P. Loza-Alvarez, “Quantitative discrimination between endogenous SHG sources in mammalian tissue, based on their polarization response,” Opt. Express17(12), 10168–10176 (2009). [CrossRef] [PubMed]
  33. S. Psilodimitrakopoulos, S. I. C. O. Santos, I. Amat-Roldan, A. K. N. Thayil, D. Artigas, and P. Loza-Alvarez, “In vivo, pixel-resolution mapping of thick filaments’ orientation in nonfibrilar muscle using polarization-sensitive second harmonic generation microscopy,” J. Biomed. Opt.14(1), 014001–014011 (2009). [CrossRef] [PubMed]
  34. P. J. Su, W. L. Chen, T. H. Li, C. K. Chou, T. H. Chen, Y. Y. Ho, C. H. Huang, S. J. Chang, Y. Y. Huang, H. S. Lee, and C. Y. Dong, “The discrimination of type I and type II collagen and the label-free imaging of engineered cartilage tissue,” Biomaterials31(36), 9415–9421 (2010). [CrossRef] [PubMed]
  35. X. Han, R. M. Burke, M. L. Zettel, P. Tang, and E. B. Brown, “Second harmonic properties of tumor collagen: determining the structural relationship between reactive stroma and healthy stroma,” Opt. Express16(3), 1846–1859 (2008). [CrossRef] [PubMed]
  36. T. Hompland, A. Erikson, M. Lindgren, T. Lindmo, and C. de Lange Davies, “Second-harmonic generation in collagen as a potential cancer diagnostic parameter,” J. Biomed. Opt.13(5), 054050 (2008). [CrossRef] [PubMed]
  37. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley Interscience, 2007).
  38. P. N. Butcher and D. Cotter, The Elements of Nonlinear Optics (Cambridge University Press, 2003).
  39. B. Y. Jiang and S. W. Chu, “Trigonal symmetry of type I collagen probed by SHG polarization anisotropy,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2008), paper JWA30.
  40. J. T. Kwak, R. Reddy, S. Sinha, and R. Bhargava, “Analysis of variance in spectroscopic imaging data from human tissues,” Anal. Chem.84(2), 1063–1069 (2012). [CrossRef] [PubMed]
  41. I. W. Levin and R. Bhargava, “Fourier transform infrared vibrational spectroscopic imaging: integrating microscopy and molecular recognition,” in Annual Review of Physical Chemistry (Annual Reviews, Palo Alto, 2005), Vol. 56, pp. 429–474.
  42. D. C. Fernandez, R. Bhargava, S. M. Hewitt, and I. W. Levin, “Infrared spectroscopic imaging for histopathologic recognition,” Nat. Biotechnol.23(4), 469–474 (2005). [CrossRef] [PubMed]
  43. S. Brasselet, D. Aït-Belkacem, A. Gasecka, F. Munhoz, S. Brustlein, and S. Brasselet, “Influence of birefringence on polarization resolved nonlinear microscopy and collagen SHG structural imaging,” Opt. Express18(14), 14859–14870 (2010). [CrossRef] [PubMed]
  44. I. Gusachenko, G. Latour, and M. C. Schanne-Klein, “Polarization-resolved Second Harmonic microscopy in anisotropic thick tissues,” Opt. Express18(18), 19339–19352 (2010). [CrossRef] [PubMed]
  45. O. De Wever and M. Mareel, “Role of tissue stroma in cancer cell invasion,” J. Pathol.200(4), 429–447 (2003). [CrossRef] [PubMed]
  46. E. Makareeva, S. J. Han, J. C. Vera, D. L. Sackett, K. Holmbeck, C. L. Phillips, R. Visse, H. Nagase, and S. Leikin, “Carcinomas contain a matrix metalloproteinase-resistant isoform of type I collagen exerting selective support to invasion,” Cancer Res.70(11), 4366–4374 (2010). [CrossRef] [PubMed]
  47. S. J. Han, E. Makareeva, N. V. Kuznetsova, A. M. DeRidder, M. B. Sutter, W. Losert, C. L. Phillips, R. Visse, H. Nagase, and S. Leikin, “Molecular mechanism of type I collagen homotrimer resistance to mammalian collagenases,” J. Biol. Chem.285(29), 22276–22281 (2010). [CrossRef] [PubMed]
  48. M. Hidalgo and S. G. Eckhardt, “Development of matrix metalloproteinase inhibitors in cancer therapy,” J. Natl. Cancer Inst.93(3), 178–193 (2001). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited