OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 3, Iss. 9 — Sep. 1, 2012
  • pp: 2066–2077

Measurement and correction of transverse chromatic offsets for multi-wavelength retinal microscopy in the living eye

Wolf M. Harmening, Pavan Tiruveedhula, Austin Roorda, and Lawrence C. Sincich  »View Author Affiliations

Biomedical Optics Express, Vol. 3, Issue 9, pp. 2066-2077 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (2465 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A special challenge arises when pursuing multi-wavelength imaging of retinal tissue in vivo, because the eye’s optics must be used as the main focusing elements, and they introduce significant chromatic dispersion. Here we present an image-based method to measure and correct for the eye’s transverse chromatic aberrations rapidly, non-invasively, and with high precision. We validate the technique against hyperacute psychophysical performance and the standard chromatic human eye model. In vivo correction of chromatic dispersion will enable confocal multi-wavelength images of the living retina to be aligned, and allow targeted chromatic stimulation of the photoreceptor mosaic to be performed accurately with sub-cellular resolution.

© 2012 OSA

OCIS Codes
(170.5810) Medical optics and biotechnology : Scanning microscopy
(330.5510) Vision, color, and visual optics : Psychophysics
(130.2035) Integrated optics : Dispersion compensation devices
(330.7327) Vision, color, and visual optics : Visual optics, ophthalmic instrumentation
(110.1080) Imaging systems : Active or adaptive optics

ToC Category:
Ophthalmology Applications

Original Manuscript: June 12, 2012
Revised Manuscript: August 6, 2012
Manuscript Accepted: August 7, 2012
Published: August 13, 2012

Wolf M. Harmening, Pavan Tiruveedhula, Austin Roorda, and Lawrence C. Sincich, "Measurement and correction of transverse chromatic offsets for multi-wavelength retinal microscopy in the living eye," Biomed. Opt. Express 3, 2066-2077 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Liang and D. R. Williams, “Aberrations and retinal image quality of the normal human eye,” J. Opt. Soc. Am. A14(11), 2873–2883 (1997). [CrossRef] [PubMed]
  2. J. Liang, D. R. Williams, and D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A14(11), 2884–2892 (1997). [CrossRef] [PubMed]
  3. A. Dubra, Y. Sulai, J. L. Norris, R. F. Cooper, A. M. Dubis, D. R. Williams, and J. Carroll, “Noninvasive imaging of the human rod photoreceptor mosaic using a confocal adaptive optics scanning ophthalmoscope,” Biomed. Opt. Express2(7), 1864–1876 (2011). [CrossRef] [PubMed]
  4. D. W. Arathorn, Q. Yang, C. R. Vogel, Y. Zhang, P. Tiruveedhula, and A. Roorda, “Retinally stabilized cone-targeted stimulus delivery,” Opt. Express15(21), 13731–13744 (2007). [CrossRef] [PubMed]
  5. H. Hofer, J. Carroll, J. Neitz, M. Neitz, and D. R. Williams, “Organization of the human trichromatic cone mosaic,” J. Neurosci.25(42), 9669–9679 (2005). [CrossRef] [PubMed]
  6. G. Palczewska, T. Maeda, Y. Imanishi, W. Sun, Y. Chen, D. R. Williams, D. W. Piston, A. Maeda, and K. Palczewski, “Noninvasive multiphoton fluorescence microscopy resolves retinol and retinal condensation products in mouse eyes,” Nat. Med.16(12), 1444–1449 (2010). [CrossRef] [PubMed]
  7. M. J. Koss, I. Beger, and F. H. Koch, “Subthreshold diode laser micropulse photocoagulation versus intravitreal injections of bevacizumab in the treatment of central serous chorioretinopathy,” Eye (Lond.)26(2), 307–314 (2012). [CrossRef] [PubMed]
  8. D. A. Atchison and G. Smith, “Chromatic dispersions of the ocular media of human eyes,” J. Opt. Soc. Am. A22(1), 29–37 (2005). [CrossRef] [PubMed]
  9. L. N. Thibos, A. Bradley, D. L. Still, X. Zhang, and P. A. Howarth, “Theory and measurement of ocular chromatic aberration,” Vision Res.30(1), 33–49 (1990). [CrossRef] [PubMed]
  10. P. Simonet and M. C. Campbell, “The optical transverse chromatic aberration on the fovea of the human eye,” Vision Res.30(2), 187–206 (1990). [CrossRef] [PubMed]
  11. R. M. Steinman, G. M. Haddad, A. A. Skavenski, and D. Wyman, “Miniature eye movement,” Science181(4102), 810–819 (1973). [CrossRef] [PubMed]
  12. M. Rucci, R. Iovin, M. Poletti, and F. Santini, “Miniature eye movements enhance fine spatial detail,” Nature447(7146), 852–854 (2007). [CrossRef] [PubMed]
  13. Y. Zhang, S. Poonja, and A. Roorda, “MEMS-based adaptive optics scanning laser ophthalmoscopy,” Opt. Lett.31(9), 1268–1270 (2006). [CrossRef] [PubMed]
  14. Q. Yang, D. W. Arathorn, P. Tiruveedhula, C. R. Vogel, and A. Roorda, “Design of an integrated hardware interface for AOSLO image capture and cone-targeted stimulus delivery,” Opt. Express18(17), 17841–17858 (2010). [CrossRef] [PubMed]
  15. S. Marcos, S. A. Burns, P. M. Prieto, R. Navarro, and B. Baraibar, “Investigating sources of variability of monochromatic and transverse chromatic aberrations across eyes,” Vision Res.41(28), 3861–3871 (2001). [CrossRef] [PubMed]
  16. M. Rynders, B. Lidkea, W. Chisholm, and L. N. Thibos, “Statistical distribution of foveal transverse chromatic aberration, pupil centration, and angle psi in a population of young adult eyes,” J. Opt. Soc. Am. A12(10), 2348–2357 (1995). [CrossRef] [PubMed]
  17. M. Guizar-Sicairos, S. T. Thurman, and J. R. Fienup, “Efficient subpixel image registration algorithms,” Opt. Lett.33(2), 156–158 (2008). [CrossRef] [PubMed]
  18. C. Bolger, S. Bojanic, N. F. Sheahan, D. Coakley, and J. F. Malone, “Dominant frequency content of ocular microtremor from normal subjects,” Vision Res.39(11), 1911–1915 (1999). [CrossRef] [PubMed]
  19. G. Westheimer and S. P. McKee, “Spatial configurations for visual hyperacuity,” Vision Res.17(8), 941–947 (1977). [CrossRef] [PubMed]
  20. S. Marcos, S. A. Burns, E. Moreno-Barriusop, and R. Navarro, “A new approach to the study of ocular chromatic aberrations,” Vision Res.39(26), 4309–4323 (1999). [CrossRef] [PubMed]
  21. L. N. Thibos, M. Ye, X. Zhang, and A. Bradley, “The chromatic eye: a new reduced-eye model of ocular chromatic aberration in humans,” Appl. Opt.31(19), 3594–3600 (1992). [CrossRef] [PubMed]
  22. D. R. Williams, “Imaging single cells in the living retina,” Vision Res.51(13), 1379–1396 (2011). [CrossRef] [PubMed]
  23. E. A. Rossi and A. Roorda, “The relationship between visual resolution and cone spacing in the human fovea,” Nat. Neurosci.13(2), 156–157 (2010). [CrossRef] [PubMed]
  24. L. C. Sincich, Y. Zhang, P. Tiruveedhula, J. C. Horton, and A. Roorda, “Resolving single cone inputs to visual receptive fields,” Nat. Neurosci.12(8), 967–969 (2009). [CrossRef] [PubMed]
  25. A. Stockman, L. T. Sharpe, and C. Fach, “The spectral sensitivity of the human short-wavelength sensitive cones derived from thresholds and color matches,” Vision Res.39(17), 2901–2927 (1999). [CrossRef] [PubMed]
  26. A. Stockman and L. T. Sharpe, “The spectral sensitivities of the middle- and long-wavelength-sensitive cones derived from measurements in observers of known genotype,” Vision Res.40(13), 1711–1737 (2000). [CrossRef] [PubMed]
  27. G. Wald, “Human vision and the spectrum,” Science101(2635), 653–658 (1945). [CrossRef] [PubMed]
  28. W. S. Tuten, P. Tiruveedhula, and A. Roorda, “Adaptive optics scanning laser ophthalmoscope-based microperimetry,” Optom. Vis. Sci.89(5), 563–574 (2012). [CrossRef] [PubMed]
  29. C. A. Johnson, A. J. Adams, E. J. Casson, and J. D. Brandt, “Blue-on-yellow perimetry can predict the development of glaucomatous visual field loss,” Arch. Ophthalmol.111(5), 645–650 (1993). [CrossRef] [PubMed]
  30. K. Grieve, P. Tiruveedhula, Y. Zhang, and A. Roorda, “Multi-wavelength imaging with the adaptive optics scanning laser Ophthalmoscope,” Opt. Express14(25), 12230–12242 (2006). [CrossRef] [PubMed]
  31. Y. Geng, L. A. Schery, R. Sharma, A. Dubra, K. Ahmad, R. T. Libby, and D. R. Williams, “Optical properties of the mouse eye,” Biomed. Opt. Express2(4), 717–738 (2011). [CrossRef] [PubMed]
  32. G. Feng, R. H. Mellor, M. Bernstein, C. Keller-Peck, Q. T. Nguyen, M. Wallace, J. M. Nerbonne, J. W. Lichtman, and J. R. Sanes, “Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP,” Neuron28(1), 41–51 (2000). [CrossRef] [PubMed]
  33. I.-J. Kim, Y. Zhang, M. Meister, and J. R. Sanes, “Laminar restriction of retinal ganglion cell dendrites and axons: subtype-specific developmental patterns revealed with transgenic markers,” J. Neurosci.30(4), 1452–1462 (2010). [CrossRef] [PubMed]
  34. J. Carroll, M. Neitz, H. Hofer, J. Neitz, and D. R. Williams, “Functional photoreceptor loss revealed with adaptive optics: an alternate cause of color blindness,” Proc. Natl. Acad. Sci. U.S.A.101(22), 8461–8466 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: AVI (3708 KB)     
» Media 2: AVI (2983 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited