OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 3, Iss. 9 — Sep. 1, 2012
  • pp: 2142–2153

Interlesion differences in the local photodynamic therapy response of oral cavity lesions assessed by diffuse optical spectroscopies

Daniel J. Rohrbach, Nestor Rigual, Erin Tracy, Andrew Kowalczewski, Kenneth L. Keymel, Michele T. Cooper, Weirong Mo, Heinz Baumann, Barbara W. Henderson, and Ulas Sunar  »View Author Affiliations

Biomedical Optics Express, Vol. 3, Issue 9, pp. 2142-2153 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (2196 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Photodynamic therapy (PDT) efficacy depends on the local dose deposited in the lesion as well as oxygen availability in the lesion. We report significant interlesion differences between two patients with oral lesions treated with the same drug dose and similar light dose of 2-1[hexyloxyethyl]-2-devinylpyropheophorbide-a (HPPH)-mediated photodynamic therapy (PDT). Pre-PDT and PDT-induced changes in hemodynamic parameters and HPPH photosensitizer content, quantified by diffuse optical methods, demonstrated substantial differences between the two lesions. The differences in PDT action determined by the oxidative cross-linking of signal transducer and activator of transcription 3 (STAT3), a molecular measure of accumulated local PDT photoreaction, also showed >100-fold difference between the lesions, greatly exceeding what would be expected from the slight difference in light dose. Our results suggest diffuse optical spectroscopies can provide in vivo metrics that are indicative of local PDT dose in oral lesions.

© 2012 OSA

OCIS Codes
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.6480) Medical optics and biotechnology : Spectroscopy, speckle

ToC Category:
Optical Therapies and Photomodificaton

Original Manuscript: June 6, 2012
Revised Manuscript: July 27, 2012
Manuscript Accepted: August 10, 2012
Published: August 16, 2012

Daniel J. Rohrbach, Nestor Rigual, Erin Tracy, Andrew Kowalczewski, Kenneth L. Keymel, Michele T. Cooper, Weirong Mo, Heinz Baumann, Barbara W. Henderson, and Ulas Sunar, "Interlesion differences in the local photodynamic therapy response of oral cavity lesions assessed by diffuse optical spectroscopies," Biomed. Opt. Express 3, 2142-2153 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Quon, C. E. Grossman, J. C. Finlay, T. C. Zhu, C. S. Clemmens, K. M. Malloy, and T. M. Busch, “Photodynamic therapy in the management of pre-malignant head and neck mucosal dysplasia and microinvasive carcinoma,” Photodiagn. Photodyn. Ther.8(2), 75–85 (2011). [CrossRef] [PubMed]
  2. M. A. Biel, “Photodynamic therapy treatment of early oral and laryngeal cancers,” Photochem. Photobiol.83(5), 1063–1068 (2007). [CrossRef] [PubMed]
  3. B. C. Wilson and M. S. Patterson, “The physics, biophysics and technology of photodynamic therapy,” Phys. Med. Biol.53(9), R61–R109 (2008). [CrossRef] [PubMed]
  4. T. M. Busch, S. M. Hahn, E. P. Wileyto, C. J. Koch, D. L. Fraker, P. Zhang, M. Putt, K. Gleason, D. B. Shin, M. J. Emanuele, K. Jenkins, E. Glatstein, and S. M. Evans, “Hypoxia and Photofrin uptake in the intraperitoneal carcinomatosis and sarcomatosis of photodynamic therapy patients,” Clin. Cancer Res.10(14), 4630–4638 (2004). [CrossRef] [PubMed]
  5. X. Zhou, B. W. Pogue, B. Chen, E. Demidenko, R. Joshi, J. Hoopes, and T. Hasan, “Pretreatment photosensitizer dosimetry reduces variation in tumor response,” Int. J. Radiat. Oncol. Biol. Phys.64(4), 1211–1220 (2006). [CrossRef] [PubMed]
  6. H. W. Wang, M. E. Putt, M. J. Emanuele, D. B. Shin, E. Glatstein, A. G. Yodh, and T. M. Busch, “Treatment-induced changes in tumor oxygenation predict photodynamic therapy outcome,” Cancer Res.64(20), 7553–7561 (2004). [CrossRef] [PubMed]
  7. G. Yu, T. Durduran, C. Zhou, H. W. Wang, M. E. Putt, H. M. Saunders, C. M. Sehgal, E. Glatstein, A. G. Yodh, and T. M. Busch, “Noninvasive monitoring of murine tumor blood flow during and after photodynamic therapy provides early assessment of therapeutic efficacy,” Clin. Cancer Res.11(9), 3543–3552 (2005). [CrossRef] [PubMed]
  8. B. C. Wilson, M. S. Patterson, and L. Lilge, “Implicit and explicit dosimetry in photodynamic therapy: a New paradigm,” Lasers Med. Sci.12(3), 182–199 (1997). [CrossRef] [PubMed]
  9. I. Georgakoudi and T. H. Foster, “Singlet oxygen- versus nonsinglet oxygen-mediated mechanisms of sensitizer photobleaching and their effects on photodynamic dosimetry,” Photochem. Photobiol.67(6), 612–625 (1998). [PubMed]
  10. U. Sunar, D. Rohrbach, N. Rigual, E. Tracy, K. Keymel, M. T. Cooper, H. Baumann, and B. H. Henderson, “Monitoring photobleaching and hemodynamic responses to HPPH-mediated photodynamic therapy of head and neck cancer: a case report,” Opt. Express18(14), 14969–14978 (2010). [CrossRef] [PubMed]
  11. B. W. Henderson, C. Daroqui, E. Tracy, L. A. Vaughan, G. M. Loewen, M. T. Cooper, and H. Baumann, “Cross-linking of signal transducer and activator of transcription 3—a molecular marker for the photodynamic reaction in cells and tumors,” Clin. Cancer Res.13(11), 3156–3163 (2007). [CrossRef] [PubMed]
  12. W. Liu, A. R. Oseroff, and H. Baumann, “Photodynamic therapy causes cross-linking of signal transducer and activator of transcription proteins and attenuation of interleukin-6 cytokine responsiveness in epithelial cells,” Cancer Res.64(18), 6579–6587 (2004). [CrossRef] [PubMed]
  13. D. J. Pine, D. A. Weitz, P. M. Chaikin, and E. Herbolzheimer, “Diffusing wave spectroscopy,” Phys. Rev. Lett.60(12), 1134–1137 (1988). [CrossRef] [PubMed]
  14. G. Maret and P. E. Wolf, “Multiple light-scattering from disordered media—the effect of Brownian-motion of scatterers,” Z. Phys. B65(4), 409–413 (1987). [CrossRef]
  15. D. A. Boas, L. E. Campbell, and A. G. Yodh, “Scattering and Imaging with Diffusing Temporal Field Correlations,” Phys. Rev. Lett.75(9), 1855–1858 (1995). [CrossRef] [PubMed]
  16. M. Heckmeier, S. E. Skipetrov, G. Maret, and R. Maynard, “Imaging of dynamic heterogeneities in multiple-scattering media,” J. Opt. Soc. Am. A14(1), 185–191 (1997). [CrossRef]
  17. P. Zakharov, A. Völker, A. Buck, B. Weber, and F. Scheffold, “Quantitative modeling of laser speckle imaging,” Opt. Lett.31(23), 3465–3467 (2006). [CrossRef] [PubMed]
  18. J. Li, G. Dietsche, D. Iftime, S. E. Skipetrov, G. Maret, T. Elbert, B. Rockstroh, and T. Gisler, “Noninvasive detection of functional brain activity with near-infrared diffusing-wave spectroscopy,” J. Biomed. Opt.10(4), 044002 (2005). [CrossRef] [PubMed]
  19. D. A. Boas and A. G. Yodh, “Spatially varying dynamical properties of turbid media probed with diffusing temporal light correlation,” J. Opt. Soc. Am. A14(1), 192–215 (1997). [CrossRef]
  20. G. Yu, T. Durduran, C. Zhou, T. C. Zhu, J. C. Finlay, T. M. Busch, S. B. Malkowicz, S. M. Hahn, and A. G. Yodh, “Real-time in situ monitoring of human prostate photodynamic therapy with diffuse light,” Photochem. Photobiol.82(5), 1279–1284 (2006). [CrossRef] [PubMed]
  21. U. Sunar, H. Quon, T. Durduran, J. Zhang, J. Du, C. Zhou, G. Yu, R. Choe, A. Kilger, R. Lustig, L. Loevner, S. Nioka, B. Chance, and A. G. Yodh, “Noninvasive diffuse optical measurement of blood flow and blood oxygenation for monitoring radiation therapy in patients with head and neck tumors: a pilot study,” J. Biomed. Opt.11(6), 064021 (2006). [CrossRef] [PubMed]
  22. C. Zhou, R. Choe, N. Shah, T. Durduran, G. Yu, A. Durkin, D. Hsiang, R. Mehta, J. Butler, A. Cerussi, B. J. Tromberg, and A. G. Yodh, “Diffuse optical monitoring of blood flow and oxygenation in human breast cancer during early stages of neoadjuvant chemotherapy,” J. Biomed. Opt.12(5), 051903 (2007). [CrossRef] [PubMed]
  23. H. W. Wang, T. C. Zhu, M. E. Putt, M. Solonenko, J. Metz, A. Dimofte, J. Miles, D. L. Fraker, E. Glatstein, S. M. Hahn, and A. G. Yodh, “Broadband reflectance measurements of light penetration, blood oxygenation, hemoglobin concentration, and drug concentration in human intraperitoneal tissues before and after photodynamic therapy,” J. Biomed. Opt.10(1), 014004 (2005). [CrossRef] [PubMed]
  24. U. Sunar, S. Makonnen, C. Zhou, T. Durduran, G. Yu, H. W. Wang, W. M. F. Lee, and A. G. Yodh, “Hemodynamic responses to antivascular therapy and ionizing radiation assessed by diffuse optical spectroscopies,” Opt. Express15(23), 15507–15516 (2007). [CrossRef] [PubMed]
  25. P. R. Bargo, “Optical measurements for quality control in photodynamic therapy” (Oregon Health & Science University, 2003).
  26. A. Kienle and M. S. Patterson, “Improved solutions of the steady-state and the time-resolved diffusion equations for reflectance from a semi-infinite turbid medium,” J. Opt. Soc. Am. A14(1), 246–254 (1997). [CrossRef] [PubMed]
  27. A. Amelink, O. P. Kaspers, H. J. Sterenborg, J. E. van der Wal, J. L. Roodenburg, and M. J. Witjes, “Non-invasive measurement of the morphology and physiology of oral mucosa by use of optical spectroscopy,” Oral Oncol.44(1), 65–71 (2008). [CrossRef] [PubMed]
  28. E. L. Hull and T. H. Foster, “Steady-state reflectance spectroscopy in the P3 approximation,” J. Opt. Soc. Am. A18(3), 584–599 (2001). [CrossRef]
  29. G. M. Palmer and N. Ramanujam, “Monte Carlo-based inverse model for calculating tissue optical properties. Part I: Theory and validation on synthetic phantoms,” Appl. Opt.45(5), 1062–1071 (2006). [CrossRef] [PubMed]
  30. S. L. Jacques, “Origins of tissue optical properties in the UVA, Visible, and NIR regions,” in Advances in Optical Imaging and Photon Migration, R. R. Alfano and J. G. Fujimoto, eds., in Vol. 2 of OSA Topics in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), pp. 364–369.
  31. J. R. Mourant, T. Fuselier, J. Boyer, T. M. Johnson, and I. J. Bigio, “Predictions and measurements of scattering and absorption over broad wavelength ranges in tissue phantoms,” Appl. Opt.36(4), 949–957 (1997). [CrossRef] [PubMed]
  32. J. Wu, M. S. Feld, and R. P. Rava, “Analytical model for extracting intrinsic fluorescence in turbid media,” Appl. Opt.32(19), 3585–3595 (1993). [CrossRef] [PubMed]
  33. J. C. Finlay, D. L. Conover, E. L. Hull, and T. H. Foster, “Porphyrin bleaching and PDT-induced spectral changes are irradiance dependent in ALA-sensitized normal rat skin in vivo,” Photochem. Photobiol.73(1), 54–63 (2001). [CrossRef] [PubMed]
  34. A. Amelink, A. van der Ploeg van den Heuvel, W. J. de Wolf, D. J. Robinson, and H. J. Sterenborg, “Monitoring PDT by means of superficial reflectance spectroscopy,” J. Photochem. Photobiol. B79(3), 243–251 (2005). [CrossRef] [PubMed]
  35. C. Sheng, B. W. Pogue, E. Wang, J. E. Hutchins, and P. J. Hoopes, “Assessment of photosensitizer dosimetry and tissue damage assay for photodynamic therapy in advanced-stage tumors,” Photochem. Photobiol.79(6), 520–525 (2004). [CrossRef] [PubMed]
  36. J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Plenum, New York, 1983), pp. 14–18.
  37. M. Inaguma and K. Hashimoto, “Porphyrin-like fluorescence in oral cancer,” Cancer86(11), 2201–2211 (1999). [CrossRef] [PubMed]
  38. J. Axelsson, J. Swartling, and S. Andersson-Engels, “In vivo photosensitizer tomography inside the human prostate,” Opt. Lett.34(3), 232–234 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited