OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 3, Iss. 9 — Sep. 1, 2012
  • pp: 2162–2174

Real-time 3D and 4D Fourier domain Doppler optical coherence tomography based on dual graphics processing units

Yong Huang, Xuan Liu, and Jin U. Kang  »View Author Affiliations

Biomedical Optics Express, Vol. 3, Issue 9, pp. 2162-2174 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (8303 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present real-time 3D (2D cross-sectional image plus time) and 4D (3D volume plus time) phase-resolved Doppler OCT (PRDOCT) imaging based on configuration of dual graphics processing units (GPU). A GPU-accelerated phase-resolving processing algorithm was developed and implemented. We combined a structural image intensity-based thresholding mask and average window method to improve the signal-to-noise ratio of the Doppler phase image. A 2D simultaneous display of the structure and Doppler flow images was presented at a frame rate of 70 fps with an image size of 1000 × 1024 (X × Z) pixels. A 3D volume rendering of tissue structure and flow images—each with a size of 512 × 512 pixels—was presented 64.9 milliseconds after every volume scanning cycle with a volume size of 500 × 256 × 512 (X × Y × Z) voxels, with an acquisition time window of only 3.7 seconds. To the best of our knowledge, this is the first time that an online, simultaneous structure and Doppler flow volume visualization has been achieved. Maximum system processing speed was measured to be 249,000 A-scans per second with each A-scan size of 2048 pixels.

© 2012 OSA

OCIS Codes
(100.2000) Image processing : Digital image processing
(100.6890) Image processing : Three-dimensional image processing
(110.4500) Imaging systems : Optical coherence tomography
(170.3890) Medical optics and biotechnology : Medical optics instrumentation

ToC Category:
Image Processing

Original Manuscript: July 19, 2012
Revised Manuscript: August 15, 2012
Manuscript Accepted: August 16, 2012
Published: August 20, 2012

Yong Huang, Xuan Liu, and Jin U. Kang, "Real-time 3D and 4D Fourier domain Doppler optical coherence tomography based on dual graphics processing units," Biomed. Opt. Express 3, 2162-2174 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. Drexler and J. G. Fujimoto, Optical Coherence Tomography, Technology and Applications (Springer, 2008)
  2. Z. P. Chen, T. E. Milner, S. Srinivas, X. Wang, A. Malekafzali, M. J. C. van Gemert, and J. S. Nelson, “Noninvasive imaging of in vivo blood flow velocity using optical Doppler tomography,” Opt. Lett.22(14), 1119–1121 (1997). [CrossRef] [PubMed]
  3. R. K. Wang, S. L. Jacques, Z. Ma, S. Hurst, S. R. Hanson, and A. Gruber, “Three dimensional optical angiography,” Opt. Express15(7), 4083–4097 (2007). [CrossRef] [PubMed]
  4. A. Mariampillai, B. A. Standish, E. H. Moriyama, M. Khurana, N. R. Munce, M. K. K. Leung, J. Jiang, A. Cable, B. C. Wilson, I. A. Vitkin, and V. X. D. Yang, “Speckle variance detection of microvasculature using swept-source optical coherence tomography,” Opt. Lett.33(13), 1530–1532 (2008). [CrossRef] [PubMed]
  5. V. J. Srinivasan, J. Y. Jiang, M. A. Yaseen, H. Radhakrishnan, W. Wu, S. Barry, A. E. Cable, and D. A. Boas, “Rapid volumetric angiography of cortical microvasculature with optical coherence tomography,” Opt. Lett.35(1), 43–45 (2010). [CrossRef] [PubMed]
  6. G. Liu, L. Chou, W. Jia, W. Qi, B. Choi, and Z. P. Chen, “Intensity-based modified Doppler variance algorithm: application to phase instable and phase stable optical coherence tomography systems,” Opt. Express19(12), 11429–11440 (2011). [CrossRef] [PubMed]
  7. Y. H. Zhao, Z. P. Chen, C. Saxer, Q. Shen, S. Xiang, J. F. de Boer, and J. S. Nelson, “Doppler standard deviation imaging for clinical monitoring of in vivo human skin blood flow,” Opt. Lett.25(18), 1358–1360 (2000). [CrossRef] [PubMed]
  8. Y. H. Zhao, Z. P. Chen, Z. Ding, H. Ren, and J. S. Nelson, “Real-time phase-resolved functional optical coherence tomography by use of optical Hilbert transformation,” Opt. Lett.27(2), 98–100 (2002). [CrossRef] [PubMed]
  9. Y. K. Tao, A. M. Davis, and J. A. Izatt, “Single-pass volumetric bidirectional blood flow imaging spectral domain optical coherence tomography using a modified Hilbert transform,” Opt. Express16(16), 12350–12361 (2008). [CrossRef] [PubMed]
  10. Z. Yuan, Z. C. Luo, H. G. Ren, C. W. Du, and Y. Pan, “A digital frequency ramping method for enhancing Doppler flow imaging in Fourier-domain optical coherence tomography,” Opt. Express17(5), 3951–3963 (2009). [CrossRef] [PubMed]
  11. B. Baumann, B. Potsaid, M. F. Kraus, J. J. Liu, D. Huang, J. Hornegger, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Total retinal blood flow measurement with ultrahigh speed swept source/Fourier domain OCT,” Biomed. Opt. Express2(6), 1539–1552 (2011). [CrossRef] [PubMed]
  12. H. Ren, C. Du, and Y. Pan, “Cerebral blood flow imaged with ultrahigh-resolution optical coherence angiography and Doppler tomography,” Opt. Lett.37(8), 1388–1390 (2012). [CrossRef] [PubMed]
  13. S. Yazdanfar, M. D. Kulkarni, and J. A. Izatt, “High resolution imaging of in vivo cardiac dynamics using color Doppler optical coherence tomography,” Opt. Express1(13), 424–431 (1997). [CrossRef] [PubMed]
  14. R. M. Werkmeister, N. Dragostinoff, M. Pircher, E. Götzinger, C. K. Hitzenberger, R. A. Leitgeb, and L. Schmetterer, “Bidirectional Doppler Fourier-domain optical coherence tomography for measurement of absolute flow velocities in human retinal vessels,” Opt. Lett.33(24), 2967–2969 (2008). [CrossRef] [PubMed]
  15. R. K. Wang and L. An, “Doppler optical micro-angiography for volumetric imaging of vascular perfusion in vivo,” Opt. Express17(11), 8926–8940 (2009). [CrossRef] [PubMed]
  16. B. White, M. Pierce, N. Nassif, B. Cense, B. Park, G. Tearney, B. Bouma, T. Chen, and J. de Boer, “In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical coherence tomography,” Opt. Express11(25), 3490–3497 (2003). [CrossRef] [PubMed]
  17. G. Liu, W. J. Qi, L. F. Yu, and Z. P. Chen, “Real-time bulk-motion-correction free Doppler variance optical coherence tomography for choroidal capillary vasculature imaging,” Opt. Express19(4), 3657–3666 (2011). [CrossRef] [PubMed]
  18. Y. Watanabe and T. Itagaki, “Real-time display on Fourier domain optical coherence tomography system using a graphics processing unit,” J. Biomed. Opt.14(6), 060506 (2009). [CrossRef] [PubMed]
  19. K. Zhang and J. U. Kang, “Real-time 4D signal processing and visualization using graphics processing unit on a regular nonlinear-k Fourier-domain OCT system,” Opt. Express18(11), 11772–11784 (2010). [CrossRef] [PubMed]
  20. K. Zhang and J. U. Kang, “Real-time numerical dispersion compensation using graphics processing unit for Fourier-domain optical coherence tomography,” Electron. Lett.47(5), 309–310 (2011). [CrossRef]
  21. K. Zhang and J. U. Kang, “Real-time intraoperative 4D full-range FD-OCT based on the dual graphics processing units architecture for microsurgery guidance,” Biomed. Opt. Express2(4), 764–770 (2011). [CrossRef] [PubMed]
  22. Y. Watanabe, S. Maeno, K. Aoshima, H. Hasegawa, and H. Koseki, “Real-time processing for full-range Fourier-domain optical-coherence tomography with zero-filling interpolation using multiple graphic processing units,” Appl. Opt.49(25), 4756–4762 (2010). [CrossRef] [PubMed]
  23. S. Van der Jeught, A. Bradu, and A. G. Podoleanu, “Real-time resampling in Fourier domain optical coherence tomography using a graphics processing unit,” J. Biomed. Opt.15(3), 030511 (2010). [CrossRef] [PubMed]
  24. J. Rasakanthan, K. Sugden, and P. H. Tomlins, “Processing and rendering of Fourier domain optical coherence tomography images at a line rate over 524 kHz using a graphics processing unit,” J. Biomed. Opt.16(2), 020505 (2011). [CrossRef] [PubMed]
  25. Y. Huang and J. U. Kang, “Real-time reference A-line subtraction and saturation artifact removal using graphics processing unit for high-frame rate Fourier-domain optical coherence tomography video imaging,” Opt. Eng.51(7), 073203 (2012). [CrossRef]
  26. K. K. C. Lee, A. Mariampillai, J. X. Z. Yu, D. W. Cadotte, B. C. Wilson, B. A. Standish, and V. X. D. Yang, “Real-time speckle variance swept-source optical coherence tomography using a graphics processing unit,” Biomed. Opt. Express3(7), 1557–1564 (2012). [CrossRef] [PubMed]
  27. H. Jeong, N. H. Cho, U. Jung, C. Lee, J.-Y. Kim, and J. Kim, “Ultra-fast displaying spectral domain optical Doppler tomography system using a graphics processing unit,” Sensors (Basel Switzerland)12(6), 6920–6929 (2012). [CrossRef]
  28. NVIDIA, “NVIDIA CUDA C Programming Guide Version 4.2,” (April 2012).
  29. S. Kimel, L. O. Svaasand, M. Hammer-Wilson, M. J. Schell, T. E. Milner, J. S. Nelson, and M. W. Berns, “Differential vascular response to laser photothermolysis,” J. Invest. Dermatol.103(5), 693–700 (1994). [CrossRef] [PubMed]
  30. T. Leng, J. M. Miller, K. V. Bilbao, D. V. Palanker, P. Huie, and M. S. Blumenkranz, “The chick chorioallantoic membrane as a model tissue for surgical retinal research and simulation,” Retina24(3), 427–434 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MPG (534 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited