OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 3, Iss. 9 — Sep. 1, 2012
  • pp: 2200–2219

Characterization of a 3D optrode array for infrared neural stimulation

T.V.F. Abaya, M. Diwekar, S. Blair, P. Tathireddy, L. Rieth, G.A. Clark, and F. Solzbacher  »View Author Affiliations


Biomedical Optics Express, Vol. 3, Issue 9, pp. 2200-2219 (2012)
http://dx.doi.org/10.1364/BOE.3.002200


View Full Text Article

Enhanced HTML    Acrobat PDF (1794 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This paper characterizes the Utah Slant Optrode Array (USOA) as a means to deliver infrared light deep into tissue. An undoped crystalline silicon (100) substrate was used to fabricate 10 × 10 arrays of optrodes with rows of varying lengths from 0.5 mm to 1.5 mm on a 400-μm pitch. Light delivery from optical fibers and loss mechanisms through these Si optrodes were characterized, with the primary loss mechanisms being Fresnel reflection, coupling, radiation losses from the tapered shank and total internal reflection in the tips. Transmission at the optrode tips with different optical fiber core diameters and light in-coupling interfaces was investigated. At λ = 1.55μm, the highest optrode transmittance of 34.7%, relative to the optical fiber output power, was obtained with a 50-μm multi-mode fiber butt-coupled to the optrode through an intervening medium of index n = 1.66. Maximum power is directed into the optrodes when using fibers with core diameters of 200 μm or less. In addition, the output power varied with the optrode length/taper such that longer and less tapered optrodes exhibited higher light transmission efficiency. Output beam profiles and potential impacts on physiological tests were also examined. Future work is expected to improve USOA efficiency to greater than 64%.

© 2012 OSA

OCIS Codes
(170.3890) Medical optics and biotechnology : Medical optics instrumentation
(220.4610) Optical design and fabrication : Optical fabrication
(230.7380) Optical devices : Waveguides, channeled
(260.3060) Physical optics : Infrared

ToC Category:
Neuroscience and Brain Imaging

History
Original Manuscript: May 15, 2012
Revised Manuscript: August 8, 2012
Manuscript Accepted: August 10, 2012
Published: August 24, 2012

Citation
T.V.F. Abaya, M. Diwekar, S. Blair, P. Tathireddy, L. Rieth, G.A. Clark, and F. Solzbacher, "Characterization of a 3D optrode array for infrared neural stimulation," Biomed. Opt. Express 3, 2200-2219 (2012)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-3-9-2200


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. X. Navarro, T. B. Krueger, N. Lago, S. Micera, T. Stieglitz, and P. Dario, “A critical review of interfaces with the peripheral nervous system for the control of neuroprostheses and hybrid bionic systems,” J. Peripher. Nerv. Syst.10, 229–258 (2005). [CrossRef] [PubMed]
  2. A. Branner, R. B. Stein, and R. A. Normann, “Selective stimulation of cat sciatic nerve using an array of varying-length microelectrodes,” J. Neurophysiol.85, 1585–1594 (2001). [PubMed]
  3. A. Branner, R. Stein, E. Fernandez, Y. Aoyagi, and R. Normann, “Long-term stimulation and recording with a penetrating microelectrode array in cat sciatic nerve,” IEEE T. Bio-Med. Eng.51, 146–157 (2004). [CrossRef]
  4. R. A. Normann, B. R. Dowden, M. A. Frankel, A. M. Wilder, S. D. Hiatt, N. M. Ledbetter, D. A. Warren, and G. A. Clark, “Coordinated, multi-joint, fatigue-resistant feline stance produced with intrafascicular hind limb nerve stimulation,” J. Neural Eng.9, 026019 (2012). [CrossRef] [PubMed]
  5. M. Frankel, B. Dowden, V. Mathews, R. Normann, G. Clark, and S. Meek, “Multiple-input single-output closed-loop isometric force control using asynchronous intrafascicular multi-electrode stimulation,” IEEE T. Neur. Sys. Reh.19, 325–332 (2011). [CrossRef]
  6. P. Tathireddy, D. Rakwal, E. Bamberg, and F. Solzbacher, “Fabrication of 3-dimensional silicon microelectrode arrays using micro electro discharge machining for neural applications,” in Proceedings of the International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers) (IEEE, 2009), pp. 1206–1209. [CrossRef]
  7. R. Normann, D. McDonnall, G. Clark, R. Stein, and A. Branner, “Physiological activation of the hind limb muscles of the anesthetized cat using the Utah Slanted Electrode Array,” in Proceedings of IEEE International Joint Conference on Neural Networks (IEEE, 2005), pp. 3103–3108. [CrossRef]
  8. J. A. McNulty, “Histology part 6: Neural tissue, http://zoomify.lumc.edu/histonew/neuro/neuro_main.htm ”.
  9. J. Wells, C. Kao, K. Mariappan, J. Albea, E. D. Jansen, P. Konrad, and A. Mahadevan-Jansen, “Optical stimulation of neural tissue in vivo,” Opt. Lett.30, 504–506 (2005). [CrossRef] [PubMed]
  10. J. Wells, C. Kao, P. Konrad, T. Milner, J. Kim, A. Mahadevan-Jansen, and E. D. Jansen, “Biophysical mechanisms of transient optical stimulation of peripheral nerve,” Biophys. J.93, 2567–2580 (2007). [CrossRef] [PubMed]
  11. M. G. Shapiro, K. Homma, S. Villarreal, C.-P. Richter, and F. Bezanilla, “Infrared light excites cells by changing their electrical capacitance,” Nat. Commun.3, 736 (2012). [CrossRef] [PubMed]
  12. J. Wells, P. Konrad, C. Kao, E. D. Jansen, and A. Mahadevan-Jansen, “Pulsed laser versus electrical energy for peripheral nerve stimulation,” J. Neurosci. Methods163, 326–337 (2007). [CrossRef] [PubMed]
  13. J. Wells, C. Kao, E. D. Jansen, P. Konrad, and A. Mahadevan-Jansen, “Application of infrared light for in vivo neural stimulation,” J. Biomed. Opt.10, 064003 (2005). [CrossRef]
  14. R. G. McCaughey, C. Chlebicki, and B. J. Wong, “Novel wavelengths for laser nerve stimulation,” Lasers Surg. Med.42, 69–75 (2010). [CrossRef]
  15. N. Fried, S. Rais-Bahrami, G. Lagoda, A.-Y. Chuang, L.-M. Su, and A. Burnett, “Identification and imaging of the nerves responsible for erectile function in rat prostate, in vivo, using optical nerve stimulation and optical coherence tomography,” IEEE J. Sel. Topics in Quantum Electron.13, 1641–1645 (2007). [CrossRef]
  16. A. Izzo, J. Walsh, E. Jansen, M. Bendett, J. Webb, H. Ralph, and C.-P. Richter, “Optical parameter variability in laser nerve stimulation: A study of pulse duration, repetition rate, and wavelength,” IEEE T. Bio-Med. Eng.54, 1108–1114 (2007). [CrossRef]
  17. J. M. Cayce, R. M. Friedman, E. D. Jansen, A. Mahavaden-Jansen, and A. W. Roe, “Pulsed infrared light alters neural activity in rat somatosensory cortex in vivo,” Neuroimage57, 155–166 (2011). [CrossRef] [PubMed]
  18. J. Zhang, F. Laiwalla, J. A. Kim, H. Urabe, R. V. Wagenen, Y.-K. Song, B. W. Connors, F. Zhang, K. Deisseroth, and A. V. Nurmikko, “Integrated device for optical stimulation and spatiotemporal electrical recording of neural activity in light-sensitized brain tissue,” J. Neural Eng.6, 055007 (2009). [CrossRef] [PubMed]
  19. J. Wang, F. Wagner, D. A. Borton, J. Zhang, I. Ozden, R. D. Burwell, A. V. Nurmikko, R. van Wagenen, I. Diester, and K. Deisseroth, “Integrated device for combined optical neuromodulation and electrical recording for chronic in vivo applications,” J. Neural Eng.9, 016001 (2012). [CrossRef]
  20. S. Royer, B. V. Zemelman, M. Barbic, A. Losonczy, G. Buzski, and J. C. Magee, “Multi-array silicon probes with integrated optical fibers: light-assisted perturbation and recording of local neural circuits in the behaving animal.” Eur. J. Neurosci.31, 2279–2291 (2010). [CrossRef] [PubMed]
  21. A. V. Kravitz and A. C. Kreitzer, “Optogenetic manipulation of neural circuitry in vivo.” Curr. Opin. Neurobiol.21, 433–439 (2011). [CrossRef] [PubMed]
  22. A. V. Kravitz, B. S. Freeze, P. R. L. Parker, K. Kay, M. T. Thwin, K. Deisseroth, and A. C. Kreitzer, “Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry,” Nature466, 622–626 (2010). [CrossRef] [PubMed]
  23. V. Gradinaru, K. R. Thompson, F. Zhang, M. Mogri, K. Kay, M. B. Schneider, and K. Deisseroth, “Targeting and readout strategies for fast optical neural control in vitro and in vivo.” J. Neurosci.27, 14231–14238 (2007). [CrossRef] [PubMed]
  24. A. N. Zorzos, E. S. Boyden, and C. G. Fonstad, “Multiwaveguide implantable probe for light delivery to sets of distributed brain targets,” Opt. Lett.35, 4133–4135 (2010). [CrossRef] [PubMed]
  25. T. V. F. Abaya, M. Diwekar, S. Blair, P. Tathireddy, L. Rieth, G. A. Clark, and F. Solzbacher, “Optical characterization of the Utah Slant OptrodeAarray for intrafascicular infrared neural stimulation,” Proc. SPIE8207, 82075M (2012). [CrossRef]
  26. G. A. Clark, S. L. Schister, N. M. Ledbetter, D. J. Warren, F. Solzbacher, J. D. Wells, M. D. Keller, S. M. Blair, L. W. Rieth, and P. R. Tathireddy, “Selective, high-optrode-count, artifact-free stimulation with infrared light via intrafascicular Utah Slanted Optrode Arrays,” Proc. SPIE8207, 82075I (2012). [CrossRef]
  27. R. Bhandari, S. Negi, L. Rieth, and F. Solzbacher, “Wafer-scale processed, low impedance, neural arrays with varying length microelectrodes,” in International Solid-State Sensors, Actuators and Microsystems Conference (Transducers) (IEEE, 2009), pp. 1210–1213. [CrossRef]
  28. R. Bhandari, S. Negi, L. Rieth, and F. Solzbacher, “A wafer-scale etching technique for high aspect ratio implantable mems structures,” Sens. Actuators A162, 130–136 (2010). [CrossRef]
  29. M. Bass, C. DeCusatis, G. Li, V. Mahajan, J. Enoch, and E. Stryland, Handbook of Optics: Optical Properties of Materials, Nonlinear Optics, Quantum Optics (McGraw-Hill, 2009).
  30. V. Tuchin, Handbook of Optical Biomedical Diagnostics (SPIE, 2002).
  31. D. Mynbaev and L. Scheiner, Fiber-Optic Communications Technology (Prentice Hall, 2001).
  32. Y.-F. Li and J. W. Y. Lit, “Transmission properties of a multimode optical-fiber taper,” J. Opt. Soc. Am. A2, 462–468 (1985). [CrossRef]
  33. S. Tang, L. Wu, F. Li, T. Li, and R. T. Chen, “Compression-molded three-dimensional tapered optical polymeric waveguides for optoelectronic packaging,” Proc. SPIE3005, 202–211 (1997). [CrossRef]
  34. Z.-N. Lu, R. Bansal, and P. Cheo, “Radiation losses of tapered dielectric waveguides: a finite difference analysis with ridge waveguide applications,” J. Lightwave Technol.12, 1373–1377 (1994). [CrossRef]
  35. B. K. Garside, T. K. Lim, and J. P. Marton, “Ray trajectories in optical fiber tapered sections,” Appl. Opt.17, 3670–3674 (1978). [CrossRef] [PubMed]
  36. R. Deri and E. Kapon, “Low-loss III–V semiconductor optical waveguides,” IEEE J. Quantum. Electron.27, 626–640 (1991). [CrossRef]
  37. F. Bahloul, R. Attia, and D. Pagnoux, “Reduction of the overall coupling loss using nonuniform tapered microstructured optical fiber,” in Proceedings of International Conference on Transparent Optical Networks (IEEE, 2010), pp. 1–4. [CrossRef]
  38. S.-C. Hung, E.-Z. Liang, and C.-F. Lin, “Silicon waveguide sidewall smoothing by KrF excimer laser reformation,” J. Lightwave Technol.27, 887–892 (2009). [CrossRef]
  39. Q. Xia, P. F. Murphy, H. Gao, and S. Y. Chou, “Ultrafast and selective reduction of sidewall roughness in silicon waveguides using self-perfection by liquefaction,” Nanotechnology20, 345302 (2009). [CrossRef] [PubMed]
  40. K. K. Lee, D. R. Lim, L. C. Kimerling, J. Shin, and F. Cerrina, “Fabrication of ultralow-loss Si/SiO2 waveguides by roughness reduction,” Opt. Lett.26, 1888–1890 (2001). [CrossRef]
  41. D. Sparacin, S. Spector, and L. Kimerling, “Silicon waveguide sidewall smoothing by wet chemical oxidation,” J. Lightwave Technol.23, 2455–2461 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited