OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 3, Iss. 9 — Sep. 1, 2012
  • pp: 2299–2305

Multichannel diffuse optical Raman tomography for bone characterization in vivo: a phantom study

Jennifer-Lynn H. Demers, Scott C. Davis, Brian W. Pogue, and Michael D. Morris  »View Author Affiliations

Biomedical Optics Express, Vol. 3, Issue 9, pp. 2299-2305 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1090 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Raman spectroscopy is used to gather information on the mineral and organic components of bone tissue to analyze their composition. By measuring the Raman signal of bone through spatially offset Raman spectroscopy the health of the bone can be determined. We’ve customized a system with 8 collection channels that consist of individual fibers, which are coupled to separate spectrometers and cooled CCDs. This parallel detection system was used to scan gelatin phantoms with Teflon inclusions of two sizes. Raman signals were decoupled from the autofluorescence background using channel specific polynomial fitting. Images with high contrast to background ratios of Raman yield and accurate spatial resolution were recovered using a model-based diffuse tomography approach.

© 2012 OSA

OCIS Codes
(110.6960) Imaging systems : Tomography
(170.5660) Medical optics and biotechnology : Raman spectroscopy

ToC Category:
Spectroscopic Diagnostics

Original Manuscript: June 25, 2012
Revised Manuscript: August 21, 2012
Manuscript Accepted: August 22, 2012
Published: August 30, 2012

Virtual Issues
BIOMED 2012 (2012) Biomedical Optics Express

Jennifer-Lynn H. Demers, Scott C. Davis, Brian W. Pogue, and Michael D. Morris, "Multichannel diffuse optical Raman tomography for bone characterization in vivo: a phantom study," Biomed. Opt. Express 3, 2299-2305 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. J. Bailey, S. F. Wotton, T. J. Sims, and P. W. Thompson, “Post-translational modifications in the collagen of human osteoporotic femoral head,” Biochem. Biophys. Res. Commun.185(3), 801–805 (1992). [CrossRef] [PubMed]
  2. E. P. Paschalis, E. Shane, G. Lyritis, G. Skarantavos, R. Mendelsohn, and A. L. Boskey, “Bone fragility and collagen cross-links,” J. Bone Miner. Res.19(12), 2000–2004 (2004). [CrossRef] [PubMed]
  3. A. Mahadevan-Jansen, M. F. Mitchell, N. Ramanujamf, A. Malpica, S. Thomsen, U. Utzinger, and R. Richards-Kortum, “Near-infrared Raman spectroscopy for in vitro detection of cervical precancers,” Photochem. Photobiol.68(1), 123–132 (1998). [CrossRef] [PubMed]
  4. C. Krafft, G. Steiner, C. Beleites, and R. Salzer, “Disease recognition by infrared and Raman spectroscopy,” J Biophotonics2(1-2), 13–28 (2009). [CrossRef] [PubMed]
  5. N. J. Crane, V. Popescu, M. D. Morris, P. Steenhuis, and M. A. Ignelzi., “Raman spectroscopic evidence for octacalcium phosphate and other transient mineral species deposited during intramembranous mineralization,” Bone39(3), 434–442 (2006). [CrossRef] [PubMed]
  6. G. Boivin and P. J. Meunier, “The mineralization of bone tissue: a forgotten dimension in osteoporosis research,” Osteoporos. Int.14(Suppl 3), S19–S24 (2003). [PubMed]
  7. P. Matousek and N. Stone, “Emerging concepts in deep Raman spectroscopy of biological tissue,” Analyst (Lond.)134(6), 1058–1066 (2009). [CrossRef] [PubMed]
  8. N. Stone, R. Baker, K. Rogers, A. W. Parker, and P. Matousek, “Subsurface probing of calcifications with spatially offset Raman spectroscopy (SORS): future possibilities for the diagnosis of breast cancer,” Analyst (Lond.)132(9), 899–905 (2007). [CrossRef] [PubMed]
  9. M. D. Morris, W. F. Finney, R. M. Rajachar, and D. H. Kohn, “Bone tissue ultrastructural response to elastic deformation probed by Raman spectroscopy,” Faraday Discuss.126, 159–168, discussion 169–183 (2004). [CrossRef] [PubMed]
  10. B. R. McCreadie, M. D. Morris, T. C. Chen, D. Sudhaker Rao, W. F. Finney, E. Widjaja, and S. A. Goldstein, “Bone tissue compositional differences in women with and without osteoporotic fracture,” Bone39(6), 1190–1195 (2006). [CrossRef] [PubMed]
  11. E. R. Draper, M. D. Morris, N. P. Camacho, P. Matousek, M. Towrie, A. W. Parker, and A. E. Goodship, “Novel assessment of bone using time-resolved transcutaneous Raman spectroscopy,” J. Bone Miner. Res.20(11), 1968–1972 (2005). [CrossRef] [PubMed]
  12. M. D. Morris and G. S. Mandair, “Raman assessment of bone quality,” Clin. Orthop. Relat. Res.469(8), 2160–2169 (2011). [CrossRef] [PubMed]
  13. S. Srinivasan, M. Schulmerich, J. H. Cole, K. A. Dooley, J. M. Kreider, B. W. Pogue, M. D. Morris, and S. A. Goldstein, “Image-guided Raman spectroscopic recovery of canine cortical bone contrast in situ,” Opt. Express16(16), 12190–12200 (2008). [CrossRef] [PubMed]
  14. M. D. Keller, S. K. Majumder, and A. Mahadevan-Jansen, “Spatially offset Raman spectroscopy of layered soft tissues,” Opt. Lett.34(7), 926–928 (2009). [CrossRef] [PubMed]
  15. P. Matousek, E. R. Draper, A. E. Goodship, I. P. Clark, K. L. Ronayne, and A. W. Parker, “Noninvasive Raman spectroscopy of human tissue in vivo,” Appl. Spectrosc.60(7), 758–763 (2006). [CrossRef] [PubMed]
  16. D. S. Kepshire, S. C. Davis, H. Dehghani, K. D. Paulsen, and B. W. Pogue, “Subsurface diffuse optical tomography can localize absorber and fluorescent objects but recovered image sensitivity is nonlinear with depth,” Appl. Opt.46(10), 1669–1678 (2007). [CrossRef] [PubMed]
  17. S. C. Davis, B. W. Pogue, R. Springett, C. Leussler, P. Mazurkewitz, S. B. Tuttle, S. L. Gibbs-Strauss, S. S. Jiang, H. Dehghani, and K. D. Paulsen, “Magnetic resonance-coupled fluorescence tomography scanner for molecular imaging of tissue,” Rev. Sci. Instrum.79(6), 064302 (2008). [CrossRef] [PubMed]
  18. S. J. Madsen, M. S. Patterson, and B. C. Wilson, “The use of India ink as an optical absorber in tissue-simulating phantoms,” Phys. Med. Biol.37(4), 985–993 (1992). [CrossRef] [PubMed]
  19. J. R. Janesick, Scientific Charge-Coupled Devices (SPIE Press, Bellingham, Wash., 2001), p. xvi.
  20. F. W. L. Esmonde-White, K. A. Esmonde-White, and M. D. Morris, “Minor distortions with major consequences: correcting distortions in imaging spectrographs,” Appl. Spectrosc.65(1), 85–98 (2011). [CrossRef] [PubMed]
  21. C. A. Lieber and A. Mahadevan-Jansen, “Automated method for subtraction of fluorescence from biological Raman spectra,” Appl. Spectrosc.57(11), 1363–1367 (2003). [CrossRef] [PubMed]
  22. H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using NIRFAST: Algorithm for numerical model and image reconstruction,” Commun. Numer. Methods Eng.25(6), 711–732 (2009). [CrossRef] [PubMed]
  23. S. C. Davis, H. Dehghani, J. Wang, S. Jiang, B. W. Pogue, and K. D. Paulsen, “Image-guided diffuse optical fluorescence tomography implemented with Laplacian-type regularization,” Opt. Express15(7), 4066–4082 (2007). [CrossRef] [PubMed]
  24. A. Soubret, J. Ripoll, and V. Ntziachristos, “Accuracy of fluorescent tomography in the presence of heterogeneities: study of the normalized Born ratio,” IEEE Trans. Med. Imaging24(10), 1377–1386 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited