OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 3, Iss. 9 — Sep. 1, 2012
  • pp: 2326–2338

On the use of photoacoustics to detect red blood cell aggregation

Eno Hysi, Ratan K. Saha, and Michael C. Kolios  »View Author Affiliations

Biomedical Optics Express, Vol. 3, Issue 9, pp. 2326-2338 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1254 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The feasibility of detecting red blood cell (RBC) aggregation with photoacoustics (PAs) was investigated theoretically and experimentally using human and porcine RBCs. The theoretical PA signals and spectra generated from such samples were examined for several hematocrit levels and aggregates sizes. The effect of a finite transducer bandwidth on the received PA signal was also examined. The simulation results suggest that the dominant frequency of the PA signals from non-aggregated RBCs decreases towards clinical frequency ranges as the aggregate size increases. The experimentally measured mean spectral power increased by ~6 dB for the largest aggregate compared to the non-aggregated samples. Such results confirm the theoretical predictions and illustrate the potential of using PA imaging for detecting RBC aggregation.

© 2012 OSA

OCIS Codes
(170.1470) Medical optics and biotechnology : Blood or tissue constituent monitoring
(110.5125) Imaging systems : Photoacoustics

ToC Category:
Photoacoustic Imaging and Spectroscopy

Original Manuscript: July 17, 2012
Revised Manuscript: August 27, 2012
Manuscript Accepted: August 28, 2012
Published: August 30, 2012

Eno Hysi, Ratan K. Saha, and Michael C. Kolios, "On the use of photoacoustics to detect red blood cell aggregation," Biomed. Opt. Express 3, 2326-2338 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. O. K. Baskurt, B. Neu, and H. J. Meiselman, Red Blood Cell Aggregation (CRC Press, Boca Raton, FL, 2011).
  2. M. Uyuklu, M. Canpolat, H. J. Meiselman, and O. K. Baskurt, “Wavelength selection in measuring red blood cell aggregation based on light transmittance,” J. Biomed. Opt.16(11), 117006 (2011). [CrossRef] [PubMed]
  3. H. J. Meiselman, “Red blood cell aggregation: 45 years being curious,” Biorheology46(1), 1–19 (2009). [PubMed]
  4. P. C. Johnson, J. J. Bishop, S. Popel, and M. Intaglietta, “Effects of red cell aggregation on the venous microcirculation,” Biorheology36(5-6), 457–460 (1999). [PubMed]
  5. O. K. Baskurt, M. R. Hardeman, M. W. Rampling, and H. J. Meiselman, Handbook of Hemorheology and Hemodynamics (IOS Press, Amsterdam, 2007).
  6. O. K. Baskurt, A. Temiz, and H. J. Meiselman, “Red blood cell aggregation in experimental sepsis,” J. Lab. Clin. Med.130(2), 183–190 (1997). [CrossRef] [PubMed]
  7. B. Almog, R. Gamzu, R. Almog, J. B. Lessing, I. Shapira, S. Berliner, D. Pauzner, S. Maslovitz, and I. Levin, “Enhanced erythrocyte aggregation in clinically diagnosed pelvic inflammatory disease,” Sex. Transm. Dis.32(8), 484–486 (2005). [CrossRef] [PubMed]
  8. P. Foresto, M. D’Arrigo, F. Filippini, R. Gallo, L. Barberena, L. Racca, J. Valverde, and R. J. Rasia, “Evaluación de alteraciones hemorreológicas en pacientes hipertensos [Hemorheological alterations in hypertensive patients],” Medicina (B. Aires)65(2), 121–125 (2005). [PubMed]
  9. E. Piva, M. C. Sanzari, G. Servidio, and M. Plebani, “Length of sedimentation reaction in undiluted blood (erythrocyte sedimentation rate): variations with sex and age and reference limits,” Clin. Chem. Lab. Med.39(5), 451–454 (2001). [CrossRef] [PubMed]
  10. O. K. Baskurt and H. J. Meiselman, “Cellular determinants of low-shear blood viscosity,” Biorheology34(3), 235–247 (1997). [CrossRef] [PubMed]
  11. J. G. G. Dobbe, G. J. Streekstra, J. Strackee, M. C. M. Rutten, J. M. A. Stijnen, and C. A. Grimbergen, ““Syllectometry: The effect of aggregometer geometry in the assessment of red blood cell shape recovery and aggregation,” IEEE T,” Biomed. Eng. (N.Y.)50, 97–106 (2003).
  12. A. Vayá, C. Falcó, P. Fernández, T. Contreras, M. Valls, and J. Aznar, “Erythrocyte aggregation determined with the Myrenne aggregometer at two modes (M0, M1) and at two times (5 and 10 sec),” Clin. Hemorheol. Microcirc.29(2), 119–127 (2003). [PubMed]
  13. K. K. Shung and G A. Thieme, “Biological tissues as ultrasonic scattering media,” in Ultrasonic Scattering in Biological Tissues, K. K. Shung and G. A. Thieme, eds. (CRC Press, Boca Raton, FL, 1993).
  14. R. S. C. Cobbold, Foundations of Biomedical Ultrasound (Oxford University Press, New York, 2007), Chap. 4.
  15. L. V. Wang and H. Wu, Biomedical Optics Principles and Imaging (Wiley, Hoboken, NJ, 2007), Chap. 12.
  16. L. V. Wang, “Prospects of photoacoustic tomography,” Med. Phys.35(12), 5758–5767 (2008). [CrossRef] [PubMed]
  17. X. Wang, X. Xie, G. Ku, L. V. Wang, and G. Stoica, “Noninvasive imaging of hemoglobin concentration and oxygenation in the rat brain using high-resolution photoacoustic tomography,” J. Biomed. Opt.11(2), 024015 (2006). [CrossRef] [PubMed]
  18. J. G. Diebold, “Photoacoustic monopole radiation: waves from objects with symmetry in one, two and three dimensions,” in Photoacoustic Imaging and Spectroscopy, L. V. Wang, ed. (CRC Press, Boca Raton, FL, 2009).
  19. R. K. Saha and M. C. Kolios, “A simulation study on photoacoustic signals from red blood cells,” J. Acoust. Soc. Am.129(5), 2935–2943 (2011). [CrossRef] [PubMed]
  20. R. K. Saha and M. C. Kolios, “Effects of erythrocyte oxygenation on optoacoustic signals,” J. Biomed. Opt.16(11), 115003 (2011). [CrossRef] [PubMed]
  21. F. T. H. Yu and G. Cloutier, “Experimental ultrasound characterization of red blood cell aggregation using the structure factor size estimator,” J. Acoust. Soc. Am.122(1), 645–656 (2007). [CrossRef] [PubMed]
  22. F. T. H. Yu, E. Franceschini, B. Chayer, J. K. Armstrong, H. J. Meiselman, and G. Cloutier, “Ultrasonic parametric imaging of erythrocyte aggregation using the structure factor size estimator,” Biorheology46(4), 343–363 (2009). [PubMed]
  23. T. J. Szabo, Diagnostic Imaging: Inside Out (Elsevier Academic, San Diego, 2004), Chap. 4.
  24. E. L. Hinrichsen, J. Feder, and T. Jossang, “Random packing of disks in two dimensions,” Phys. Rev. A41(8), 4199–4209 (1990). [CrossRef]
  25. A. B. Karpiouk, S. R. Aglyamov, S. Mallidi, J. Shah, W. G. Scott, J. M. Rubin, and S. Y. Emelianov, “Combined ultrasound and photoacoustic imaging to detect and stage deep vein thrombosis: phantom and ex vivo studies,” J. Biomed. Opt.13(5), 054061 (2008). [CrossRef] [PubMed]
  26. R. K. Saha, S. Karmakar, E. Hysi, M. Roy, and M. C. Kolios, “Validity of a theoretical model to examine blood oxygenation dependent optoacoustics,” J. Biomed. Opt.17(5), 055002 (2012). [CrossRef] [PubMed]
  27. E. I. Galanzha, M. Sarimollaoglu, D. A. Nedosekin, S. G. Keyrouz, J. L. Mehta, and V. P. Zharov, “In vivo flow cytometry of circulating clots using negative photothermal and photoacoustic contrasts,” Cytometry A79A(10), 814–824 (2011). [CrossRef] [PubMed]
  28. E. I. Galanzha and V. P. Zharov, “Photoacoustic flow cytometry,” Methods. in press. [PubMed]
  29. L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science335(6075), 1458–1462 (2012). [CrossRef] [PubMed]
  30. F. L. Lizzi, M. Ostromogilsky, E. J. Feleppa, M. C. Rorke, and M. M. Yaremko, “Relationship of ultrasonic spectral parameters to features of tissue microstructure,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control34(3), 319–329 (1987). [CrossRef] [PubMed]
  31. E. Hysi, R. K. Saha, and M. C. Kolios, “Photoacoustic radiofrequency spectroscopy for assessing red blood cell aggregation and oxygenation,” J. Biomed. Opt.submitted.
  32. O. K. Baskurt, “R. A. Farley and H. J. Meiselman, “Erythrocyte aggregation tendency and cellular properties in horse, human and rat: a comparative study,” Am. J. Physiol. Heart Circ. Physiol.273, H2604–H2612 (1997).
  33. O. K. Baskurt and H. J. Meiselman, “Blood rheology and hemodynamics,” Semin. Thromb. Hemost.29(5), 435–450 (2003). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited