OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 4, Iss. 1 — Jan. 1, 2013
  • pp: 1–14

Accelerated image reconstruction in fluorescence molecular tomography using dimension reduction

Xu Cao, Xin Wang, Bin Zhang, Fei Liu, Jianwen Luo, and Jing Bai  »View Author Affiliations

Biomedical Optics Express, Vol. 4, Issue 1, pp. 1-14 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2666 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



With the development of charge-coupled device (CCD) camera based non-contact fluorescence molecular tomography (FMT) imaging systems, multi projections and densely sampled fluorescent measurements used in subsequent image reconstruction can be easily obtained. However, challenges still remain in fast image reconstruction because of the large computational burden and memory requirement in the inverse problem. In this work, an accelerated image reconstruction method in FMT using principal components analysis (PCA) is presented to reduce the dimension of the inverse problem. Phantom experiments are performed to verify the feasibility of the proposed method. The results demonstrate that the proposed method can accelerate image reconstruction in FMT almost without quality degradation.

© 2012 OSA

OCIS Codes
(100.3190) Image processing : Inverse problems
(170.3010) Medical optics and biotechnology : Image reconstruction techniques
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.6960) Medical optics and biotechnology : Tomography
(290.1990) Scattering : Diffusion
(290.7050) Scattering : Turbid media

ToC Category:
Image Reconstruction and Inverse Problems

Original Manuscript: September 12, 2012
Revised Manuscript: November 20, 2012
Manuscript Accepted: November 27, 2012
Published: December 5, 2012

Xu Cao, Xin Wang, Bin Zhang, Fei Liu, Jianwen Luo, and Jing Bai, "Accelerated image reconstruction in fluorescence molecular tomography using dimension reduction," Biomed. Opt. Express 4, 1-14 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of whole-body photonic imaging,” Nat. Biotechnol.23(3), 313–320 (2005). [CrossRef] [PubMed]
  2. E. E. Graves, R. Weissleder, and V. Ntziachristos, “Fluorescence molecular imaging of small animal tumour models,” Curr. Mol. Med.4(4), 419–430 (2004). [CrossRef] [PubMed]
  3. N. C. Deliolanis, J. Dunham, T. Wurdinger, J. L. Figueiredo, T. Bakhos, and V. Ntziachristos, “In-vivo imaging of murine tumors using complete-angle projection fluorescence molecular tomography,” J. Biomed. Opt.14(3), 030509 (2009). [CrossRef] [PubMed]
  4. M. Rudin and R. Weissleder, “Molecular imaging in drug discovery and development,” Nat. Rev. Drug Discov.2(2), 123–131 (2003). [CrossRef] [PubMed]
  5. J. K. Willmann, N. van Bruggen, L. M. Dinkelborg, and S. S. Gambhir, “Molecular imaging in drug development,” Nat. Rev. Drug Discovery7(7), 591–607 (2008). [CrossRef]
  6. T. F. Massoud and S. S. Gambhir, “Molecular imaging in living subjects: seeing fundamental biological processes in a new light,” Genes Dev.17(5), 545–580 (2003). [CrossRef] [PubMed]
  7. L. Wang, S. L. Jacques, and L. Zheng, “MCML-Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Meth. Programs Biomed.47(2), 131–146 (1995). [CrossRef]
  8. D. Y. Paithankar, A. U. Chen, B. W. Pogue, M. S. Patterson, and E. M. Sevick-Muraca, “Imaging of fluorescent yield and lifetime from multiply scattered light reemitted from random media,” Appl. Opt.36(10), 2260–2272 (1997). [CrossRef] [PubMed]
  9. S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys.20(2), 299–309 (1993). [CrossRef] [PubMed]
  10. J. Ripoll, V. Ntziachristos, R. Carminati, and M. Nieto-Vesperinas, “Kirchhoff approximation for diffusive waves,” Phys. Rev. E64(5), 0519172001.
  11. J. Ripoll, M. Nieto-Vesperinas, R. Weissleder, and V. Ntziachristos, “Fast analytical approximation for arbitrary geometries in diffuse optical tomography,” Opt. Lett.27(7), 527–529 (2002). [CrossRef]
  12. N. Deliolanis, T. Lasser, D. Hyde, A. Soubret, J. Ripoll, and V. Ntziachristos, “Free-space fluorescence molecular tomography utilizing 360° geometry projections,” Opt. Lett.32(4), 382–384 (2007). [CrossRef] [PubMed]
  13. J. Ripoll, “Hybrid Fourier-real space method for diffuse optical tomography,” Opt. Lett.35(5), 688–690 (2010). [CrossRef] [PubMed]
  14. T. J. Rudge, V. Y. Soloviev, and S. R. Arridge, “Fast image reconstruction in fluoresence optical tomography using data compression,” Opt. Lett.35(5), 763–765 (2010). [CrossRef] [PubMed]
  15. N. Ducros, C. D. Andrea, G. Valentini, T. Rudge, S. Arridge, and A. Bassi, “Full-wavelet approach for fluorescence diffuse optical tomography with structured illumination,” Opt. Lett.35(21), 3676–3678 (2010). [CrossRef] [PubMed]
  16. N. Ducros, A. Bassi, G. Valentini, M. Schweiger, S. Arridge, and C. D Andrea, “Multiple-view fluorescence optical tomography reconstruction using compression of experimental data,” Opt. Lett.36(8), 1377–1379 (2011). [CrossRef] [PubMed]
  17. A. D. Zacharopoulos, P. Svenmarker, J. Axelsson, M. Schweiger, S. R. Arridge, and S. Andersson-Engels, “A matrix-free algorithm for multiple wavelength fluorescence tomography,” Opt. Express17(5), 3042–3051 (2009). [CrossRef]
  18. A. D. Zacharopoulos, A. Garofalakis, J. Ripoll, S. R. Arridge, and S. Andersson-Engels, “Development of in-vivo fluorescence imaging with the Matrix-Free method,” J. Phys. Conf. Ser.255(1), 012006 (2010). [CrossRef]
  19. T. Lasser and V. Ntziachristos, “Optimization of 360° projection fluorescence molecular tomography,” Med. Image Anal.11(4), 389–399 (2007). [CrossRef] [PubMed]
  20. D. Wang, X. Liu, and J. Bai, “Analysis of fast full angle fluorescence diffuse optical tomography with beam-forming illumination,” Opt. Exp.17(24), 21376–21395 (2009). [CrossRef]
  21. M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, “The finite elementmethod for the propagation of light in scatteringmedia: Boundary and source conditions,” Med. Phys.22(11), 1779–1792 (1995). [CrossRef] [PubMed]
  22. R. B. Schulz, J. Ripoll, and V. Ntziachristos, “Experimental fluorescence tomography of tissues with noncontact measurements,” IEEE Trans. Med. Imaging23(4), 492–500 (2004). [CrossRef] [PubMed]
  23. I. T. Jolliffe, Principal Component Analysis, 3rd ed. (Springer-Verlag, 2002).
  24. D. A. Jackson, “Stopping rules in principal components analysis: a comparison of heuristical and statistical approaches,” Ecology74(8), 2204–2214 (1993). [CrossRef]
  25. M. Hanke and C. W. Groetsch, “Nonstationary iterated Tikhonov regularization,” J. Optim. Theor. Appl.98(1), 37–53 (1998). [CrossRef]
  26. V. Faber, A. Manteuffel, A. B. White, and G. M. Wing, “Asymptotic behavior of singular values and functions of certain convolution operators,” Comput. Math. Appl.12, 37–52 (1989).
  27. C. R. Rao and S. K. Mitra, Generalized Inverse of Matrices and Its Applications (Wiley, New York, 1971).
  28. F. Liu, X. Liu, D. F. Wang, B. Zhang, and J. Bai, “Parallel Excitation Based Fluorescence Molecular Tomography System for Whole-Body Simultaneous Imaging of Small Animals,” Ann. Biomed. Eng.38(11), 3440–3448 (2010). [CrossRef] [PubMed]
  29. G. Q. Yu, T. Durduran, C. Zhou, H. W. Wang, M. E. Putt, H. M Saunders, C. M. Sehgal, E. Glatstein, A. G. Yodh, and T. M. Busch, “Noninvasive monitoring of murine tumor blood flow during and after photodynamic therapy provides early assessment of therapeutic efficacy,” Clin Cancer Res.1(9), 3543–3552 (2005). [CrossRef]
  30. V. A. Markel and J. C. Schotland, “Inverse problem in optical diffusion tomography. II. Role of boundary conditions,” J. Opt. Soc. Am. A19(3), 558–566 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited