OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 4, Iss. 1 — Jan. 1, 2013
  • pp: 122–133

Spectral analysis of whisking output via optogenetic modulation of vibrissa cortex in rat

R. Pashaie and R. Falk  »View Author Affiliations


Biomedical Optics Express, Vol. 4, Issue 1, pp. 122-133 (2013)
http://dx.doi.org/10.1364/BOE.4.000122


View Full Text Article

Enhanced HTML    Acrobat PDF (1362 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Whisking motor output in awake and freely moving rat is investigated with optogenetic excitation/inhibition of the vibrissae motor cortex (vMCx) layer V. The goal of the study is to establish the direct causal relationship between the cortical activity and the whisking output using optical stimulation, excitatory or inhibitory, with different frequencies. Progression and reduction of the whisking frequency was obtained; however, the whisking frequency did not necessarily followed the entrainment stimulus. Based on our observations, the excitation of the vMCx doubled and inhibition reduced the whisking frequency to half, compared to control, at all stimulus frequencies. This result is an empirical evidence that the cortex exerted control through a central pattern generator structure since complete inhibition was not obtained and the frequency of the response was different from that of the stimulus. We suggest that the use of the optogenetic approach, which enabled us to perform the bidirectional modulation and direct readout from vMCx, has brought valid evidence for the causal connection between cortical activity and whisking motor output.

© 2012 OSA

OCIS Codes
(000.1430) General : Biology and medicine
(280.1415) Remote sensing and sensors : Biological sensing and sensors

ToC Category:
Optogenetics

History
Original Manuscript: September 11, 2012
Revised Manuscript: October 13, 2012
Manuscript Accepted: December 5, 2012
Published: December 14, 2012

Citation
R. Pashaie and R. Falk, "Spectral analysis of whisking output via optogenetic modulation of vibrissa cortex in rat," Biomed. Opt. Express 4, 122-133 (2013)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-4-1-122


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. I. Welker WI, “Analysis of sniffing of the albino rat,” Behaviour22(3/4), 223–244, (1964). [CrossRef]
  2. R. W. Berg and D. Kleinfeld, “Rhythmic whisking by rat: retraction as well as protraction of the vibrissae is under active muscular control,” J. Neurophysiol.89(1), 104–117, Jan. (2003). [CrossRef] [PubMed]
  3. G. E. Carvell and D. J. Simons, “Biometric analyses of vibrissal tactile discrimination in the rat,” J. Neurosci.10(8), 2638–2648, (1990). [PubMed]
  4. G. E. Carvell, S. A. Miller, and D. J. Simons, “The relationship of vibrissal motor cortex unit activity to whisking in the awake rat,” Somatosens. Mot. Res.13(2), 115–127, (1996). [CrossRef] [PubMed]
  5. R. W. Berg and D. Kleinfeld, “Vibrissa movement elicited by rhythmic electrical microstimulation to motor cortex in the aroused rat mimics exploratory whisking,” J. Neurophysiol.90(5), 2950–2963, (2003). [CrossRef] [PubMed]
  6. L. J. Herfst and M. Brecht, “Whisker movements evoked by stimulation of single motor neurons in the facial nucleus of the rat,” J. Neurophysiol.99, 2821–2832, (2008). [CrossRef] [PubMed]
  7. K. F. Ahrens and D. Kleinfeld, “Current flow in vibrissa motor cortex can phase-lock with exploratory rhythmic whisking in rat,” J. Neurophysiol92(3), 1700–1707, (2004). [CrossRef] [PubMed]
  8. F. Haiss and C. Schwarz, “Spatial segregation of different modes of movement control in the whisker representation of rat primary motor cortex,” J. Neurosci.25(6), 1579–1587, (2005). [CrossRef] [PubMed]
  9. R. Izraeli and L. Porter, “Vibrissal motor cortex in the rat: connections with the barrel field,” Exp. Brain. Res.104(1), 41–54, (1995). [CrossRef] [PubMed]
  10. D. Kleinfeld, R. W. Berg, and S. M. O’Connor, “Anatomical loops and their electrical dynamics in relation to whisking by rat,” Somatosens. Mot. Res.16(2), 69–88, (1999). [CrossRef] [PubMed]
  11. F. Matyas, V. Sreenivasan, F. Marbach, C. Wacongne, B. Barsy, C. Mateo, R. Aronoff, and C. Petersen, “Motor control by sensory cortex,” Science330(6008), 1240–1243, (2010). [CrossRef] [PubMed]
  12. M. E. Helmet and A. Keller, “Superior colliculus control of vibrissa movements,” J. Neurophysiol.100(3), 1245–1254, (2008). [CrossRef]
  13. A. Hattox, Y. Li, and A. Keller, “Serotonin regulates rhythmic whisking,” Neuron39(2), 343–352, (2003). [CrossRef] [PubMed]
  14. A. M. Hattox, C. A. Priest, and A. Keller, “Functional circuitry involved in the regulation of whisker movements,” J. Comp. Neurol.442, 266–276, (2002). [CrossRef] [PubMed]
  15. E. J. Lang, I. Sugihara, and R. Llins, “Olivocerebellar modulation of motor cortex ability to generate vibrissal movements in rat,” J. Physiol.571(Pt 1), 101–120, (2006). [CrossRef]
  16. V. Grinevich, M. Brecht, and P. Osten, “Monosynaptic pathway from rat vibrissa motor cortex to facial motor neurons revealed by lentivirus-based axonal tracing,” J. Neurosci.25(36), 8250–8258, (2005). [CrossRef] [PubMed]
  17. W. A. Friedman, L. M. Jones, N. P. Cramer, E. E. Kwegyir-Afful, H. P. Zeigler, and A. Keller, “Anticipatory activity of motor cortex in relation to rhythmic whisking,” J. Neurophysiol.95(2), 1274–1277, (2006). [CrossRef]
  18. W. A. Friedman, H. P. Zeigler, and A. Keller, “Vibrissae motor cortex unit activity during whisking,” J. Neurophysiol.107(2), 551–563, (2012). [CrossRef]
  19. M. A. Castro-Alamancos, “Vibrissa myoclonus (rhythmic retractions) driven by resonance of excitatory networks in motor cortex,” J. Neurophysiol.96(4), 1691–1698, (2006). [CrossRef] [PubMed]
  20. N. P. Cramer and A. Keller, “Cortical control of a whisking central pattern generator,” J. Neurophysiol.96(1), 209–217, (2006). [CrossRef] [PubMed]
  21. N. P. Cramer, Y. Li, and A. Keller, “The whisking rhythm generator: a novel mammalian network for the generation of movement,” J. Neurophysiol.97(3), 2148–258, (2007). [CrossRef] [PubMed]
  22. A. M. Aravanis, L. P. Wang, F. Zhang, L. A. Meltzer, M. Z. Mogri, M. B. Schneider, and K. Deisseroth, “An optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology,” J. Neural Eng.4(3), 143–156, (2007). [CrossRef]
  23. E. S. Boyden, F. Zhang, E. Bamberg, G. Nagel, and K. Deisseroth, “Millisecond-timescale, genetically targeted optical control of neural activity,” Nat. Neurosci.8(9), 1263–1268, (2005). [CrossRef] [PubMed]
  24. F. Zhang, V. Gradinaru, A. R. Adamantidis, R. Durand, R. D. Airan, L. de Lecea, and K. Deisseroth, “Optogenetic interrogation of neural circuits: technology for probing mammalian brain structures,” Nat. Protoc.5(3), 439–456, (2010). [CrossRef] [PubMed]
  25. I. Diester, M. T. Kaufman, M. Mogri, R. Pashaie, W. Goo, O. Yizhar, C. Ramakrishnan, K. Deisseroth, and K. V. Shenoy, “An optogenetic toolbox designed for primates,” Nat. Neurosci.14(3), 387–397, (2011). [CrossRef] [PubMed]
  26. R. Pashaie and R. Falk, “Single optical fiber probe for fluorescence detection and optogenetic stimulation,” IEEE Trans. Biomed. Eng. (to be published). [PubMed]
  27. K. Frimpong and S. A. Spector, “Cotransduction of nondividing cells using lentiviral vectors,” Gene. Ther.7(18), 1562–1569, (2000). [CrossRef] [PubMed]
  28. O. G. Ayling, T. C. Harrison, J. D. Boyd, A. Goroshkov, and T. H. Murphy, “Automated light-based mapping of motor cortex by photoactivation of channelrhodopsin-2 transgenic mice,” Nat. Methods, 6(3), 219–224, (2009). [CrossRef] [PubMed]
  29. M. A. Castro-Alamancos, “Neocortical synchronized oscillations induced by thalamic disinhibition in vivo,” J. Neurosci.19(18), RC27 1–7, (1999).
  30. M. A. Castro-Alamancos, “Origin of synchronized oscillations induced by neocortical disinhibition in vivo,” J. Neurosci.20(24), 9195–9206, (2000). [PubMed]
  31. A. B. Ali, J. Rossier, J. F. Staiger, and E. Audinat, “Kainate receptors regulate unitary IPSCs elicited in pyramidal cells by fast-spiking interneurons in the neocortex,” J. Neurosci.21(9), 2992–2999, (2001). [PubMed]
  32. M. Y. Min, Z. Melyan, and D. M. Kullmann, “Synaptically released glutamate reduces gamma-aminobutyric acid (GABA)ergic inhibition in the hippocampus via kainate receptors,” Proc. Natl. Acad. Sci. USA96, 9932–9937, (1999). [CrossRef] [PubMed]
  33. M. Brecht, V. Grinevich, T. E. Jin, T. Margrie, and P. Osten, “Cellular mechanisms of motor control in the vibrissal system,” Pflugers. Arch.453(3), 269–281, (2006). [CrossRef] [PubMed]
  34. P. Gao, R. Bermejo, and H. P. Zeigler, “Whisker deafferentation and rodent whisking patterns: behavioral evidence for a central pattern generator,” J. Neurosci.21(14), 5374–5380, (2001). [PubMed]
  35. P. Gao, A. M. Hattox, L. M. Jones, A. Keller, and H. P. Zeigler, “Whisker motor cortex ablation and whisker movement patterns,” Somatosens. Mot. Res.20(3–4), 191–198, (2003). [CrossRef]
  36. D. L. Sodickson and B. P. Bean, “GABAB receptor-activated inwardly rectifying potassium current in dissociated hippocampal CA3 neurons,” J. Neurosci.16(20), 6374–6385, (1996). [PubMed]
  37. S. Kleinlogel, U. Terpitz, B. Legrum, D. Gkbuget, E. Boyden, C. Bamann, P. Wood, and E. Bamberg, “A gene-fusion strategy for stoichiometric and co-localized expression of light-gated membrane proteins,” Nat. Methods8(12), 1083–1088, (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited