OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 4, Iss. 1 — Jan. 1, 2013
  • pp: 66–76

Gold nanoparticle targeted photoacoustic cavitation for potential deep tissue imaging and therapy

Hengyi Ju, Ronald A. Roy, and Todd W. Murray  »View Author Affiliations


Biomedical Optics Express, Vol. 4, Issue 1, pp. 66-76 (2013)
http://dx.doi.org/10.1364/BOE.4.000066


View Full Text Article

Enhanced HTML    Acrobat PDF (1753 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The laser generation of vapor bubbles around plasmonic nanoparticles can be enhanced through the application of an ultrasound field; a technique referred to as photoacoustic cavitation. The combination of light and ultrasound allows for bubble formation at lower laser fluence and peak negative ultrasound pressure than can be achieved using either modality alone. The growth and collapse of these bubbles leads to local mechanical disruption and acoustic emission, and can potentially be used to induce and monitor tissue therapy. Photoacoustic cavitation is investigated for a broad range of ultrasound pressures and nanoparticle concentrations for gold nanorods and nanospheres. The cavitation threshold fluences for both nanoparticle types are found to drastically reduce in the presence of an ultrasound field. The results indicate that photoacoustic cavitation can potentially be produced at depth in biological tissue without exceeding the safety limits for ultrasound or laser radiation at the tissue surface.

© 2012 OSA

OCIS Codes
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology
(170.5120) Medical optics and biotechnology : Photoacoustic imaging
(170.5180) Medical optics and biotechnology : Photodynamic therapy

ToC Category:
Photoacoustic Imaging and Spectroscopy

History
Original Manuscript: October 12, 2012
Revised Manuscript: November 30, 2012
Manuscript Accepted: December 7, 2012
Published: December 11, 2012

Citation
Hengyi Ju, Ronald A. Roy, and Todd W. Murray, "Gold nanoparticle targeted photoacoustic cavitation for potential deep tissue imaging and therapy," Biomed. Opt. Express 4, 66-76 (2013)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-4-1-66


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Link and M. A. El-Sayed, “Optical properties and ultrafast dynamics of metallic nanocrystals,” Annu. Rev. Phys. Chem.54(1), 331–366 (2003). [CrossRef] [PubMed]
  2. X. Yang, E. W. Stein, S. Ashkenazi, and L. V. Wang, “Nanoparticles for photoacoustic imaging,” Wiley Interdiscip Rev Nanomed Nanobiotechnol1(4), 360–368 (2009). [CrossRef] [PubMed]
  3. S. Y. Emelianov, P.-C. Li, and M. O’Donnell, “Photoacoustics for molecular imaging and therapy,” Phys. Today62(5), 34–39 (2009). [CrossRef] [PubMed]
  4. T. B. Huff, L. Tong, Y. Zhao, M. N. Hansen, J.-X. Cheng, and A. Wei, “Hyperthermic effects of gold nanorods on tumor cells,” Nanomedicine (Lond)2(1), 125–132 (2007). [CrossRef] [PubMed]
  5. X. Huang, P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, “Plasmonic photothermal therapy (PPTT) using gold nanoparticles,” Lasers Med. Sci.23(3), 217–228 (2008). [CrossRef] [PubMed]
  6. V. P. Zharov, V. Galitovsky, and M. Viegas, “Photothermal detection of local thermal effects during selective nanophotothermolysis,” Appl. Phys. Lett.83(24), 4897–4899 (2003). [CrossRef]
  7. D. O. Lapotko, E. Lukianova, and A. A. Oraevsky, “Selective laser nano-thermolysis of human leukemia cells with microbubbles generated around clusters of gold nanoparticles,” Lasers Surg. Med.38(6), 631–642 (2006). [CrossRef] [PubMed]
  8. V. K. Pustovalov, A. S. Smetannikov, and V. P. Zharov, “Photothermal and accompanied phenomena of selective nanophotothermolysis with gold nanoparticles and laser pulses,” Laser Phys. Lett.5(11), 775–792 (2008). [CrossRef]
  9. X. Huang, B. Kang, W. Qian, M. A. Mackey, P.-C. Chen, A. K. Oyelere, I. H. El-Sayed, and M. A. El-Sayed, “Comparative study of photothermolysis of cancer cells with nuclear-targeted or cytoplasm-targeted gold nanospheres: continuous wave or pulsed lasers,” J. Biomed. Opt.15(5), 058002 (2010). [CrossRef] [PubMed]
  10. R. R. Anderson and J. A. Parrish, “Selective photothermolysis: precise microsurgery by selective absorption of pulsed radiation,” Science220(4596), 524–527 (1983). [CrossRef] [PubMed]
  11. V. P. Zharov, R. R. Letfullin, and E. N. Galitovskaya, “Microbubbles-overlapping mode for laser killing of cancer cells with absorbing nanoparticle clusters,” J. Phys. D Appl. Phys.38(15), 2571–2581 (2005). [CrossRef]
  12. D. Lapotko, E. Lukianova, A. Shnip, G. Zheltov, M. Potapnev, V. Savitsky, O. Klimovich, and A. Oraevsky, “Laser activated nanothermolysis of leukemia cells monitored by photothermal microscopy,” Proc. SPIE5697, 82–89 (2005). [CrossRef]
  13. L. Tong, Y. Zhao, T. B. Huff, M. N. Hansen, A. Wei, and J.-X. Cheng, “Gold nanorods mediate tumor cell death by compromising membrane integrity,” Adv. Mater. (Deerfield Beach Fla.)19(20), 3136–3141 (2007). [CrossRef] [PubMed]
  14. C. Ungureanu, R. Kroes, W. Petersen, T. A. M. Groothuis, F. Ungureanu, H. Janssen, F. W. B. van Leeuwen, R. P. H. Kooyman, S. Manohar, and T. G. van Leeuwen, “Light interactions with gold nanorods and cells: implications for photothermal nanotherapeutics,” Nano Lett.11(5), 1887–1894 (2011). [CrossRef] [PubMed]
  15. E. Y. Lukianova-Hleb, C. Santiago, D. S. Wagner, J. H. Hafner, and D. O. Lapotko, “Generation and detection of plasmonic nanobubbles in zebrafish,” Nanotechnology21(22), 225102 (2010). [CrossRef] [PubMed]
  16. E. Y. Lukianova-Hleb, I. I. Koneva, A. O. Oginsky, S. La Francesca, and D. O. Lapotko, “Selective and self-guided micro-ablation of tissue with plasmonic nanobubbles,” J. Surg. Res.166(1), e3–e13 (2011). [CrossRef] [PubMed]
  17. S. Peeters, M. Kitz, S. Preisser, A. Wetterwald, B. Rothen-Rutishauser, G. N. Thalmann, C. Brandenberger, A. Bailey, and M. Frenz, “Mechanisms of nanoparticle-mediated photomechanical cell damage,” Biomed. Opt. Express3(3), 435–446 (2012). [CrossRef] [PubMed]
  18. K. Wilson, K. Homan, and S. Emelianov, “Biomedical photoacoustics beyond thermal expansion using triggered nanodroplet vaporization for contrast-enhanced imaging,” Nat Commun3, 618 (2012). [CrossRef] [PubMed]
  19. L. J. E. Anderson, E. Hansen, E. Y. Lukianova-Hleb, J. H. Hafner, and D. O. Lapotko, “Optically guided controlled release from liposomes with tunable plasmonic nanobubbles,” J. Control. Release144(2), 151–158 (2010). [CrossRef] [PubMed]
  20. V. Kotaidis, C. Dahmen, G. von Plessen, F. Springer, and A. Plech, “Excitation of nanoscale vapor bubbles at the surface of gold nanoparticles in water,” J. Chem. Phys.124(18), 184702 (2006). [CrossRef] [PubMed]
  21. D. Lapotko, “Optical excitation and detection of vapor bubbles around plasmonic nanoparticles,” Opt. Express17(4), 2538–2556 (2009). [CrossRef] [PubMed]
  22. J.-W. Kim, E. I. Galanzha, E. V. Shashkov, H.-M. Moon, and V. P. Zharov, “Golden carbon nanotubes as multimodal photoacoustic and photothermal high-contrast molecular agents,” Nat. Nanotechnol.4(10), 688–694 (2009). [CrossRef]
  23. M. Kitz, S. Preisser, A. Wetterwald, M. Jaeger, G. N. Thalmann, and M. Frenz, “Vapor bubble generation around gold nano-particles and its application to damaging of cells,” Biomed. Opt. Express2(2), 291–304 (2011). [CrossRef] [PubMed]
  24. D. Lapotko, E. Lukianova, M. Potapnev, O. Aleinikova, and A. Oraevsky, “Method of laser activated nano-thermolysis for elimination of tumor cells,” Cancer Lett.239(1), 36–45 (2006). [CrossRef] [PubMed]
  25. V. P. Zharov, K. E. Mercer, E. N. Galitovskaya, and M. S. Smeltzer, “Photothermal nanotherapeutics and nanodiagnostics for selective killing of bacteria targeted with gold nanoparticles,” Biophys. J.90(2), 619–627 (2006). [CrossRef] [PubMed]
  26. E. Y. Lukianova-Hleb, A. O. Oginsky, A. P. Samaniego, D. L. Shenefelt, D. S. Wagner, J. H. Hafner, M. C. Farach-Carson, and D. O. Lapotko, “Tunable plasmonic nanoprobes for theranostics of prostate cancer,” Theranostics1, 3–17 (2011). [CrossRef] [PubMed]
  27. G. Akchurin, B. Khlebtsov, G. Akchurin, V. Tuchin, V. Zharov, and N. Khlebtsov, “Gold nanoshell photomodification under a single-nanosecond laser pulse accompanied by color-shifting and bubble formation phenomena,” Nanotechnology19(1), 015701 (2008). [CrossRef] [PubMed]
  28. E. Lukianova-Hleb, Y. Hu, L. Latterini, L. Tarpani, S. Lee, R. A. Drezek, J. H. Hafner, and D. O. Lapotko, “Plasmonic nanobubbles as transient vapor nanobubbles generated around plasmonic nanoparticles,” ACS Nano4(4), 2109–2123 (2010). [CrossRef] [PubMed]
  29. F. Rudnitzki, M. Bever, R. Rahmanzadeh, K. Brieger, E. Endl, J. Groll, and G. Hüttmann, “Bleaching of plasmon-resonance absorption of gold nanorods decreases efficiency of cell destruction,” J. Biomed. Opt.17(5), 058003 (2012). [CrossRef] [PubMed]
  30. V. P. Zharov, E. N. Galitovskaya, C. Johnson, and T. Kelly, “Synergistic enhancement of selective nanophotothermolysis with gold nanoclusters: potential for cancer therapy,” Lasers Surg. Med.37(3), 219–226 (2005). [CrossRef] [PubMed]
  31. D. Lapotko, E. Lukianova-Hleb, S. Zhdanok, B. Rostro, R. Simonette, J. Hafner, M. Konopleva, M. Andreeff, A. Conjusteau, and A. Oraevsky, “Photothermolysis by laser-induced microbubbles generated around gold nanorod clusters selectively formed in leukemia cells,” Proc. SPIE6856, 68560K, 68560K-9 (2008). [CrossRef]
  32. C. H. Farny, T. Wu, R. G. Holt, T. W. Murray, and R. A. Roy, “Nucleating cavitation from laser-illuminated nanoparticles,” Acoust. Res. Lett. Online6(3), 138–143 (2005). [CrossRef]
  33. J. R. McLaughlan, R. A. Roy, H. Ju, and T. W. Murray, “Ultrasonic enhancement of photoacoustic emissions by nanoparticle-targeted cavitation,” Opt. Lett.35(13), 2127–2129 (2010). [CrossRef] [PubMed]
  34. B. Krasovitski, H. Kislev, and E. Kimmel, “Modeling photothermal and acoustical induced microbubble generation and growth,” Ultrasonics47(1-4), 90–101 (2007). [CrossRef] [PubMed]
  35. T. Wu, C. H. Farny, R. A. Roy, and R. G. Holt, “Modeling cavitation nucleation from laser-illuminated nanoparticles subjected to acoustic stress,” J. Acoust. Soc. Am.130(5), 3252–3263 (2011). [CrossRef] [PubMed]
  36. H. G. Flynn and C. C. Church, “Erratum: transient pulsations of small gas bubbles in water [J. Acoust. Soc. Am. 84, 985-998 (1988)],” J. Acoust. Soc. Am.84(5), 1863–1876 (1988). [CrossRef] [PubMed]
  37. T. G. Leighton, The Acoustic Bubble (Academic, London, 1994).
  38. H. J. Maris, “Introduction to the physics of nucleation,” C. R. Phys.7(9-10), 946–958 (2006). [CrossRef]
  39. T. R. Nelson, J. B. Fowlkes, J. S. Abramowicz, and C. C. Church, “Ultrasound biosafety considerations for the practicing sonographer and sonologist,” J. Ultrasound Med.28(2), 139–150 (2009). [PubMed]
  40. American National Standards Institute, “American National Standard for Safe Use of Lasers,” ANSI Z136.1–2000 (Laser Institute of America, 2000).
  41. A. Pifferi, J. Swartling, E. Chikoidze, A. Torricelli, P. Taroni, A. Bassi, S. Andersson-Engels, and R. Cubeddu, “Spectroscopic time-resolved diffuse reflectance and transmittance measurements of the female breast at different interfiber distances,” J. Biomed. Opt.9(6), 1143–1151 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited