OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 4, Iss. 10 — Oct. 1, 2013
  • pp: 2078–2086

Imaging the bipolarity of myosin filaments with Interferometric Second Harmonic Generation microscopy

Maxime Rivard, Charles-André Couture, Amir K. Miri, Mathieu Laliberté, Antony Bertrand-Grenier, Luc Mongeau, and François Légaré  »View Author Affiliations


Biomedical Optics Express, Vol. 4, Issue 10, pp. 2078-2086 (2013)
http://dx.doi.org/10.1364/BOE.4.002078


View Full Text Article

Enhanced HTML    Acrobat PDF (3448 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report that combining interferometry with Second Harmonic Generation (SHG) microscopy provides valuable information about the relative orientation of noncentrosymmetric structures composing tissues. This is confirmed through the imaging of rat medial gastrocnemius muscle. The inteferometric Second Harmonic Generation (ISHG) images reveal that each side of the myosin filaments composing the A band of the sarcomere generates π phase shifted SHG signal which implies that the myosin proteins at each end of the filaments are oriented in opposite directions. This highlights the bipolar structural organization of the myosin filaments and shows that muscles can be considered as a periodically poled biological structure.

© 2013 OSA

OCIS Codes
(190.4160) Nonlinear optics : Multiharmonic generation
(180.4315) Microscopy : Nonlinear microscopy

ToC Category:
Microscopy

History
Original Manuscript: July 17, 2013
Revised Manuscript: August 21, 2013
Manuscript Accepted: August 21, 2013
Published: September 9, 2013

Virtual Issues
Novel Techniques in Microscopy (2013) Biomedical Optics Express

Citation
Maxime Rivard, Charles-André Couture, Amir K. Miri, Mathieu Laliberté, Antony Bertrand-Grenier, Luc Mongeau, and François Légaré, "Imaging the bipolarity of myosin filaments with Interferometric Second Harmonic Generation microscopy," Biomed. Opt. Express 4, 2078-2086 (2013)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-4-10-2078


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. G. Page and H. E. Huxley, “Filament Lengths in Striated Muscle,” J. Cell Biol.19(2), 369–390 (1963). [CrossRef] [PubMed]
  2. T. D. Pollard, “Structure and Polymerization of Acanthamoeba Myosin-II Filaments,” J. Cell Biol.95(3), 816–825 (1982). [CrossRef] [PubMed]
  3. J. Q. Xu, B. A. Harder, P. Uman, and R. Craig, “Myosin Filament Structure in Vertebrate Smooth Muscle,” J. Cell Biol.134(1), 53–66 (1996). [CrossRef] [PubMed]
  4. R. Craig and J. L. Woodhead, “Structure and function of myosin filaments,” Curr. Opin. Struct. Biol.16(2), 204–212 (2006). [CrossRef] [PubMed]
  5. A. G. Engel, Myology, 3rd edition (McGraw-Hill Professional, 2004), Chap. 7.
  6. S. V. Plotnikov, A. C. Millard, P. J. Campagnola, and W. A. Mohler, “Characterization of the Myosin-Based Source for Second-Harmonic Generation from Muscle Sarcomeres,” Biophys. J.90(2), 693–703 (2006). [CrossRef] [PubMed]
  7. N. Prent, C. Greenhalgh, R. Cisek, A. Major, J. Aus Der Au, S. Elmore, J. H. G. M. Van Beek, B. Stewart, J. A. Squier, and V. Barzda, “Second harmonic generation microscopy reveals contraction dynamics in muscle cells,” La Physique Au Canada65, 129–131 (2009).
  8. C. Greenhalgh, N. Prent, C. Green, R. Cisek, A. Major, B. Stewart, and V. Barzda, “Influence of semicrystalline order on the second-harmonic generation efficiency in the anisotropic bands of myocytes,” Appl. Opt.46(10), 1852–1859 (2007). [CrossRef] [PubMed]
  9. G. Recher, D. Rouède, P. Richard, A. Simon, J.-J. Bellanger, and F. Tiaho, “Three distinct sarcomeric patterns of skeletal muscle revealed by SHG and TPEF microscopy,” Opt. Express17(22), 19763–19777 (2009). [CrossRef] [PubMed]
  10. G. Recher, D. Rouède, E. Schaub, and F. Tiaho, “Skeletal muscle sarcomeric SHG patterns photo-conversion by femtosecond infrared laser,” Biomed. Opt. Express2(2), 374–384 (2011). [CrossRef] [PubMed]
  11. S. Schürmann, F. von Wegner, R. H. A. Fink, O. Friedrich, and M. Vogel, “Second Harmonic Generation Microscopy Probes Different States of Motor Protein Interaction in Myofibrils,” Biophys. J.99(6), 1842–1851 (2010). [CrossRef] [PubMed]
  12. T. Boulesteix, E. Beaurepaire, M.-P. Sauviat, and M.-C. Schanne-Klein, “Second-harmonic microscopy of unstained living cardiac myocytes: measurements of sarcomere length with 20-nm accuracy,” Opt. Lett.29(17), 2031–2033 (2004). [CrossRef] [PubMed]
  13. S. W. Chu, S. Y. Chen, G. W. Chern, T. H. Tsai, Y. C. Chen, B. L. Lin, and C. K. Sun, “Studies of χ(2)/χ(3) Tensors in Submicron-Scaled Bio-Tissues by Polarization Harmonics Optical Microscopy,” Biophys. J.86(6), 3914–3922 (2004). [CrossRef] [PubMed]
  14. F. Tiaho, G. Recher, and D. Rouède, “Estimation of helical angles of myosin and collagen by second harmonic generation imaging microscopy,” Opt. Express15(19), 12286–12295 (2007). [CrossRef] [PubMed]
  15. F. Légaré, C. P. Pfeffer, and B. R. Olsen, “The Role of Backscattering in SHG Tissue Imaging,” Biophys. J.93(4), 1312–1320 (2007). [CrossRef] [PubMed]
  16. C. Odin, T. Guilbert, A. Alkilani, O. P. Boryskina, V. Fleury, and Y. Le Grand, “Collagen and myosin characterization by orientation field second harmonic microscopy,” Opt. Express16(20), 16151–16165 (2008). [CrossRef] [PubMed]
  17. I. Freund, M. Deutsch, and A. Sprecher, “Connective tissue polarity. Optical second-harmonic microscopy, crossed-beam summation, and small-angle scattering in rat-tail tendon,” Biophys. J.50(4), 693–712 (1986). [CrossRef] [PubMed]
  18. P. Stoller, P. M. Celliers, K. M. Reiser, and A. M. Rubenchik, “Quantitative second-harmonic generation microscopy in collagen,” Appl. Opt.42(25), 5209–5219 (2003). [CrossRef] [PubMed]
  19. M. Rivard, M. Laliberté, A. Bertrand-Grenier, C. Harnagea, C. P. Pfeffer, M. Vallières, Y. St-Pierre, A. Pignolet, M. A. El Khakani, and F. Légaré, “The structural origin of second harmonic generation in fascia,” Biomed. Opt. Express2(1), 26–36 (2011). [CrossRef] [PubMed]
  20. X. Chen, O. Nadiarynkh, S. Plotnikov, and P. J. Campagnola, “Second harmonic generation microscopy for quantitative analysis of collagen fibrillar structure,” Nat. Protoc.7(4), 654–669 (2012). [CrossRef] [PubMed]
  21. I. Gusachenko, V. Tran, Y. G. Houssen, J.-M. Allain, and M.-C. Schanne-Klein, “Polarization-Resolved Second-Harmonic Generation in Tendon upon Mechanical Stretching,” Biophys. J.102(9), 2220–2229 (2012). [CrossRef] [PubMed]
  22. R. Cicchi, N. Vogler, D. Kapsokalyvas, B. Dietzek, J. Popp, and F. S. Pavone, “From molecular structure to tissue architecture: collagen organization probed by SHG microscopy,” J Biophotonics6(2), 129–142 (2013). [CrossRef] [PubMed]
  23. J. C. Mansfield, C. P. Winlove, J. Moger, and S. J. Matcher, “Collagen fiber arrangement in normal and diseased cartilage studied by polarization sensitive nonlinear microscopy,” J. Biomed. Opt.13(4), 044020 (2008). [CrossRef] [PubMed]
  24. C. P. Brown, M.-A. Houle, M. Chen, A. J. Price, F. Légaré, and H. S. Gill, “Damage initiation and progression in the cartilage surface probed by nonlinear optical microscopy,” J. Mech. Behav. Biomed. Mater.5(1), 62–70 (2012). [CrossRef] [PubMed]
  25. W. H. Stoothoff, B. J. Bacskai, and B. T. Hyman, “Monitoring tau-tubulin interactions utilizing second harmonic generation in living neurons,” J. Biomed. Opt.13(6), 064039 (2008). [CrossRef] [PubMed]
  26. R. W. Boyd, Nonlinear optics, 3rd edition (Academic Press, 2008), Chap. 1.
  27. J. Kaneshiro, Y. Uesu, and T. Fukui, “Visibility of inverted domain structures using the second harmonic generation microscope: Comparison of interference and non-interference cases,” J. Opt. Soc. Am. B27(5), 888–894 (2010). [CrossRef]
  28. P. Rechsteiner, J. Hulliger, and M. Flörsheimer, “Phase-Sensitive Second Harmonic Microscopy Reveals Bipolar Twinning of Markov-Type Molecular Crystals,” Chem. Mater.12(11), 3296–3300 (2000). [CrossRef]
  29. S. Yazdanfar, L. H. Laiho, and P. T. C. So, “Interferometric second harmonic generation microscopy,” Opt. Express12(12), 2739–2745 (2004). [CrossRef] [PubMed]
  30. O. Masihzadeh, P. Schlup, and R. A. Bartels, “Label-free second harmonic generation holographic microscopy of biological specimens,” Opt. Express18(10), 9840–9851 (2010). [CrossRef] [PubMed]
  31. E. Shaffer, C. Moratal, P. Magistretti, P. Marquet, and C. Depeursinge, “Label-free second-harmonic phase imaging of biological specimen by digital holographic microscopy,” Opt. Lett.35(24), 4102–4104 (2010). [CrossRef] [PubMed]
  32. D. G. Winters, D. R. Smith, P. Schlup, and R. A. Bartels, “Measurement of orientation and susceptibility ratios using a polarization-resolved second-harmonic generation holographic microscope,” Biomed. Opt. Express3(9), 2004–2011 (2012). [CrossRef] [PubMed]
  33. R. Stolle, G. Marowsky, E. Schwarzberg, and G. Berkovic, “Phase measurements in nonlinear optics,” Appl. Phys. B63, 491–498 (1996).
  34. Y. Jeon, H. Min, D. Kim, and M. Oh-e, “Determination of the Crystalline x-Axis of Quartz by Second-Harmonic Phase Measurement,” J. Korean Phys. Soc.46, S159–S162 (2005).
  35. M. Rivard, K. Popov, C.-A. Couture, M. Laliberté, A. Bertrand-Grenier, F. Martin, H. Pépin, C. P. Pfeffer, C. Brown, L. Ramunno, and F. Légaré, “Imaging the noncentrosymmetric structural organization of tendon with Interferometric Second Harmonic Generation microscopy,” J. Biophotonics, DOI: (2013). [CrossRef]
  36. I. Rocha-Mendoza, D. R. Yankelevich, M. Wang, K. M. Reiser, C. W. Frank, and A. Knoesen, “Sum Frequency Vibrational Spectroscopy: The Molecular Origins of the Optical Second-Order Nonlinearity of Collagen,” Biophys. J.93(12), 4433–4444 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited