OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 4, Iss. 10 — Oct. 1, 2013
  • pp: 2095–2106

Sequential average segmented microscopy for high signal-to-noise ratio motion-artifact-free in vivo heart imaging

Claudio Vinegoni, Sungon Lee, Paolo Fumene Feruglio, Pasquina Marzola, Matthias Nahrendorf, and Ralph Weissleder  »View Author Affiliations

Biomedical Optics Express, Vol. 4, Issue 10, pp. 2095-2106 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2908 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In vivo imaging is often severely compromised by cardiovascular and respiratory motion. Highly successful motion compensation techniques have been developed for clinical imaging (e.g. magnetic resonance imaging) but the use of more advanced techniques for intravital microscopy is largely unexplored. Here, we implement a sequential cardiorespiratory gating scheme (SCG) for averaged microscopy. We show that SCG is very efficient in eliminating motion artifacts, is highly practical, enables high signal-to-noise ratio (SNR) in vivo imaging, and yields large field of views. The technique is particularly useful for high-speed data acquisition or for imaging scenarios where the fluorescence signal is not significantly above noise or background levels.

© 2013 OSA

OCIS Codes
(170.2520) Medical optics and biotechnology : Fluorescence microscopy
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.5810) Medical optics and biotechnology : Scanning microscopy
(180.0180) Microscopy : Microscopy

ToC Category:

Original Manuscript: May 13, 2013
Revised Manuscript: August 5, 2013
Manuscript Accepted: August 6, 2013
Published: September 9, 2013

Claudio Vinegoni, Sungon Lee, Paolo Fumene Feruglio, Pasquina Marzola, Matthias Nahrendorf, and Ralph Weissleder, "Sequential average segmented microscopy for high signal-to-noise ratio motion-artifact-free in vivo heart imaging," Biomed. Opt. Express 4, 2095-2106 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Weigert, M. Sramkova, L. Parente, P. Amornphimoltham, and A. Masedunskas, “Intravital microscopy: a novel tool to study cell biology in living animals,” Histochem. Cell Biol.133(5), 481–491 (2010). [CrossRef] [PubMed]
  2. M. J. Pittet and R. Weissleder, “Intravital imaging,” Cell147(5), 983–991 (2011). [CrossRef] [PubMed]
  3. P. Bousso and H. D. Moreau, “Functional immunoimaging: the revolution continues,” Nat. Rev. Immunol.12(12), 858–864 (2012). [CrossRef] [PubMed]
  4. L. Ritsma, B. Ponsioen, and J. van Rheenen, “Intravital imaging of cell signaling in mice,” Intravital1(1), 2–8 (2012). [CrossRef]
  5. S. Yazdanfar, M. Kulkarni, and J. Izatt, “High resolution imaging of in vivo cardiac dynamics using color Doppler optical coherence tomography,” Opt. Express1(13), 424–431 (1997). [CrossRef] [PubMed]
  6. S. Lee, C. Vinegoni, P. F. Feruglio, L. Fexon, R. Gorbatov, M. Pivoravov, A. Sbarbati, M. Nahrendorf, and R. Weissleder, “Real-time in vivo imaging of the beating mouse heart at microscopic resolution,” Nat Commun3, 1054 (2012). [CrossRef] [PubMed]
  7. M. R. Looney, E. E. Thornton, D. Sen, W. J. Lamm, R. W. Glenny, and M. F. Krummel, “Stabilized imaging of immune surveillance in the mouse lung,” Nat. Methods8(1), 91–96 (2011). [CrossRef] [PubMed]
  8. S. Laffray, S. Pagès, H. Dufour, P. De Koninck, Y. De Koninck, and D. Côté, “Adaptive movement compensation for in vivo imaging of fast cellular dynamics within a moving tissue,” PLoS ONE6(5), e19928 (2011). [CrossRef] [PubMed]
  9. R. T. A. Megens, S. Reitsma, L. Prinzen, M. G. oude Egbrink, W. Engels, P. J. Leenders, E. J. Brunenberg, K. D. Reesink, B. J. Janssen, B. M. ter Haar Romeny, D. W. Slaaf, and M. A. van Zandvoort, “In vivo high-resolution structural imaging of large arteries in small rodents using two-photon laser scanning microscopy,” J. Biomed. Opt.15(1), 011108 (2010). [CrossRef] [PubMed]
  10. A. D. Scott, J. Keegan, and D. N. Firmin, “Motion in cardiovascular MR imaging,” Radiology250(2), 331–351 (2009). [CrossRef] [PubMed]
  11. J. Tsao and S. Kozerke, “MRI temporal acceleration techniques,” J. Magn. Reson. Imaging36(3), 543–560 (2012). [CrossRef] [PubMed]
  12. D. J. Atkinson and R. R. Edelman, “Cineangiography of the heart in a single breath hold with a segmented turboFLASH sequence,” Radiology178(2), 357–360 (1991). [PubMed]
  13. J. P. Finn and R. R. Edelman, “Black-blood and segmented k-space magnetic resonance angiography,” Magn. Reson. Imaging Clin. N. Am.1(2), 349–357 (1993). [PubMed]
  14. T. K. Foo, M. A. Bernstein, A. M. Aisen, R. J. Hernandez, B. D. Collick, and T. Bernstein, “Improved ejection fraction and flow velocity estimates with use of view sharing and uniform repetition time excitation with fast cardiac techniques,” Radiology195(2), 471–478 (1995). [PubMed]
  15. S. Lee, C. Vinegoni, P. F. Feruglio, and R. Weissleder, “Improved intravital microscopy via synchronization of respiration and holder stabilization,” J. Biomed. Opt.17(9), 096018 (2012). [CrossRef] [PubMed]
  16. M. B. Bernstein, K. F. King, and X. J. Zhou, Handbook of MRI pulse sequences (Elsevier Academic Press, 2004).
  17. R. H. Hashemi, W. G. Bradley, and C. J. Lisanti, MRI: The Basics (Lippincott Williams &Wilking, 2010).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited