OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 4, Iss. 10 — Oct. 1, 2013
  • pp: 2269–2283

Low-cost laser speckle contrast imaging of blood flow using a webcam

Lisa M. Richards, S. M. Shams Kazmi, Janel L. Davis, Katherine E. Olin, and Andrew K. Dunn  »View Author Affiliations


Biomedical Optics Express, Vol. 4, Issue 10, pp. 2269-2283 (2013)
http://dx.doi.org/10.1364/BOE.4.002269


View Full Text Article

Enhanced HTML    Acrobat PDF (4616 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Laser speckle contrast imaging has become a widely used tool for dynamic imaging of blood flow, both in animal models and in the clinic. Typically, laser speckle contrast imaging is performed using scientific-grade instrumentation. However, due to recent advances in camera technology, these expensive components may not be necessary to produce accurate images. In this paper, we demonstrate that a consumer-grade webcam can be used to visualize changes in flow, both in a microfluidic flow phantom and in vivo in a mouse model. A two-camera setup was used to simultaneously image with a high performance monochrome CCD camera and the webcam for direct comparison. The webcam was also tested with inexpensive aspheric lenses and a laser pointer for a complete low-cost, compact setup ($90, 5.6 cm length, 25 g). The CCD and webcam showed excellent agreement with the two-camera setup, and the inexpensive setup was used to image dynamic blood flow changes before and after a targeted cerebral occlusion.

© 2013 OSA

OCIS Codes
(040.1490) Detectors : Cameras
(120.3890) Instrumentation, measurement, and metrology : Medical optics instrumentation
(120.6150) Instrumentation, measurement, and metrology : Speckle imaging
(170.3880) Medical optics and biotechnology : Medical and biological imaging

ToC Category:
Speckle Imaging and Diagnostics

History
Original Manuscript: July 10, 2013
Revised Manuscript: August 23, 2013
Manuscript Accepted: August 24, 2013
Published: September 26, 2013

Citation
Lisa M. Richards, S. M. Shams Kazmi, Janel L. Davis, Katherine E. Olin, and Andrew K. Dunn, "Low-cost laser speckle contrast imaging of blood flow using a webcam," Biomed. Opt. Express 4, 2269-2283 (2013)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-4-10-2269


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. F. Fercher and J. D. Briers, “Flow Visualization by Means of Single-Exposure Speckle Photography,” Opt. Commun.37(5), 326–330 (1981). [CrossRef]
  2. A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood Flow Metab.21(3), 195–201 (2001). [CrossRef] [PubMed]
  3. C. Ayata, A. K. Dunn, Y. Gursoy-Ozdemir, Z. Huang, D. A. Boas, and M. A. Moskowitz, “Laser speckle flowmetry for the study of cerebrovascular physiology in normal and ischemic mouse cortex,” J. Cereb. Blood Flow Metab.24(7), 744–755 (2004). [CrossRef] [PubMed]
  4. C. Ayata, H. K. Shin, S. Salomone, Y. Ozdemir-Gursoy, D. A. Boas, A. K. Dunn, and M. A. Moskowitz, “Pronounced hypoperfusion during spreading depression in mouse cortex,” J. Cereb. Blood Flow Metab.24(10), 1172–1182 (2004). [CrossRef] [PubMed]
  5. H. Bolay, U. Reuter, A. K. Dunn, Z. Huang, D. A. Boas, and M. A. Moskowitz, “Intrinsic brain activity triggers trigeminal meningeal afferents in a migraine model,” Nat. Med.8(2), 136–142 (2002). [CrossRef] [PubMed]
  6. T. Durduran, M. G. Burnett, G. Yu, C. Zhou, D. Furuya, A. G. Yodh, J. A. Detre, and J. H. Greenberg, “Spatiotemporal quantification of cerebral blood flow during functional activation in rat somatosensory cortex using laser-speckle flowmetry,” J. Cereb. Blood Flow Metab.24(5), 518–525 (2004). [CrossRef] [PubMed]
  7. A. K. Dunn, A. Devor, A. M. Dale, and D. A. Boas, “Spatial extent of oxygen metabolism and hemodynamic changes during functional activation of the rat somatosensory cortex,” Neuroimage27(2), 279–290 (2005). [CrossRef] [PubMed]
  8. J. D. Briers and S. Webster, “Laser speckle contrast analysis (LASCA): a nonscanning, full-field technique for monitoring capillary blood flow,” J. Biomed. Opt.1(2), 174–179 (1996). [CrossRef] [PubMed]
  9. B. Choi, N. M. Kang, and J. S. Nelson, “Laser speckle imaging for monitoring blood flow dynamics in the in vivo rodent dorsal skin fold model,” Microvasc. Res.68(2), 143–146 (2004). [CrossRef] [PubMed]
  10. J. D. Briers and A. F. Fercher, “Retinal Blood-Flow Visualization by Means of Laser Speckle Photography,” Invest. Ophthalmol. Vis. Sci.22(2), 255–259 (1982). [PubMed]
  11. A. I. Srienc, Z. L. Kurth-Nelson, and E. A. Newman, “Imaging retinal blood flow with laser speckle flowmetry,” Front. Neuroenergetics2, 128 (2010). [CrossRef] [PubMed]
  12. N. Hecht, J. Woitzik, J. P. Dreier, and P. Vajkoczy, “Intraoperative monitoring of cerebral blood flow by laser speckle contrast analysis,” Neurosurg. Focus27(4), E11 (2009). [CrossRef] [PubMed]
  13. A. B. Parthasarathy, E. L. Weber, L. M. Richards, D. J. Fox, and A. K. Dunn, “Laser speckle contrast imaging of cerebral blood flow in humans during neurosurgery: a pilot clinical study,” J. Biomed. Opt.15(6), 066030 (2010). [CrossRef] [PubMed]
  14. E. Klijn, H. C. Hulscher, R. K. Balvers, W. P. Holland, J. Bakker, A. J. Vincent, C. M. Dirven, and C. Ince, “Laser speckle imaging identification of increases in cortical microcirculatory blood flow induced by motor activity during awake craniotomy,” J. Neurosurg.118(2), 280–286 (2013). [CrossRef] [PubMed]
  15. J. D. Briers, “Laser Doppler, speckle and related techniques for blood perfusion mapping and imaging,” Physiol. Meas.22(4), R35–R66 (2001). [CrossRef] [PubMed]
  16. D. A. Boas and A. K. Dunn, “Laser speckle contrast imaging in biomedical optics,” J. Biomed. Opt.15(1), 011109 (2010). [CrossRef] [PubMed]
  17. Y. Atchia, H. Levy, S. Dufour, and O. Levi, “Rapid multiexposure in vivo brain imaging system using vertical cavity surface emitting lasers as a light source,” Appl. Opt.52(7), C64–C71 (2013). [CrossRef] [PubMed]
  18. B. Kruijt, H. S. Bruijn, A. van der Ploeg-van den Heuvel, H. J. Sterenborg, and D. J. Robinson, “Laser speckle imaging of dynamic changes in flow during photodynamic therapy,” Lasers Med. Sci.21(4), 208–212 (2006). [CrossRef] [PubMed]
  19. Z. Wang, S. Hughes, S. Dayasundara, and R. S. Menon, “Theoretical and experimental optimization of laser speckle contrast imaging for high specificity to brain microcirculation,” J. Cereb. Blood Flow Metab.27(2), 258–269 (2007). [CrossRef] [PubMed]
  20. M. M. da Silva, J. R. D. A. Nozela, M. J. Chaves, R. Alves Braga Jr, and H. J. Rabal, “Optical mouse acting as biospeckle sensor,” Opt. Commun.284(7), 1798–1802 (2011). [CrossRef]
  21. M. Vannoni, M. Trivi, R. Arizaga, H. Rabal, and G. Molesini, “Dynamic speckle imaging with low-cost devices,” Eur. J. Phys.29(5), 967–975 (2008). [CrossRef]
  22. I. Remer and A. Bilenca, “A cellphone-based laser speckle imager,” presented at SPIE Photonics West, 8229A–15, Session 4, San Francisco, CA, 21–26 Jan. 2012.
  23. L. Grimes, “Cell phone app the latest weapon in malaria detection” (2011), retrieved Mar. 4, 2013, http://www.reuters.com/video/2011/06/08/cell-phone-app-the-latest-weapon-in-mala?videoId=212225154 .
  24. O. Yang and B. Choi, “Laser speckle imaging using a consumer-grade color camera,” Opt. Lett.37(19), 3957–3959 (2012). [CrossRef] [PubMed]
  25. G. C. Holst and T. S. Lomheim, CMOS/CCD sensors and camera systems, 2nd ed. (JCD Publishing and SPIE, Winter Park, FL and Bellingham, WA, 2011).
  26. E. H. Ratzlaff and A. Grinvald, “A tandem-lens epifluorescence macroscope: hundred-fold brightness advantage for wide-field imaging,” J. Neurosci. Methods36(2-3), 127–137 (1991). [CrossRef] [PubMed]
  27. W. J. Tom, A. Ponticorvo, and A. K. Dunn, “Efficient processing of laser speckle contrast images,” IEEE Trans. Med. Imaging27(12), 1728–1738 (2008). [CrossRef] [PubMed]
  28. J. R. Anderson, D. T. Chiu, R. J. Jackman, O. Cherniavskaya, J. C. McDonald, H. Wu, S. H. Whitesides, and G. M. Whitesides, “Fabrication of Topologically Complex Three-Dimensional Microfluidic Systems in PDMS by Rapid Prototyping,” Anal. Chem.72(14), 3158–3164 (2000). [CrossRef] [PubMed]
  29. A. B. Parthasarathy, W. J. Tom, A. Gopal, X. J. Zhang, and A. K. Dunn, “Robust flow measurement with multi-exposure speckle imaging,” Opt. Express16(3), 1975–1989 (2008). [CrossRef] [PubMed]
  30. A. Roggan, M. Friebel, K. Dorschel, A. Hahn, and G. Muller, “Optical Properties of Circulating Human Blood in the Wavelength Range 400-2500 nm,” J. Biomed. Opt.4(1), 36–46 (1999). [CrossRef] [PubMed]
  31. B. D. Watson, W. D. Dietrich, R. Busto, M. S. Wachtel, and M. D. Ginsberg, “Induction of reproducible brain infarction by photochemically initiated thrombosis,” Ann. Neurol.17(5), 497–504 (1985). [CrossRef] [PubMed]
  32. S. Zhang and T. H. Murphy, “Imaging the impact of cortical microcirculation on synaptic structure and sensory-evoked hemodynamic responses in vivo,” PLoS Biol.5(5), e119 (2007). [CrossRef] [PubMed]
  33. R. Bandyopadhyay, A. S. Gittings, S. S. Suh, P. K. Dixon, and D. J. Durian, “Speckle-visibility spectroscopy: A tool to study time-varying dynamics,” Rev. Sci. Instrum.76(9), 093110 (2005). [CrossRef]
  34. S. Klein, M. Staring, K. Murphy, M. A. Viergever, and J. P. Pluim, “elastix: a toolbox for intensity-based medical image registration,” IEEE Trans. Med. Imaging29(1), 196–205 (2010). [CrossRef] [PubMed]
  35. S. M. S. Kazmi, A. B. Parthasarthy, N. E. Song, T. A. Jones, and A. K. Dunn, “Chronic imaging of cortical blood flow using Multi-Exposure Speckle Imaging,” J. Cereb. Blood Flow Metab.33(6), 798–808 (2013). [CrossRef] [PubMed]
  36. S. J. Kirkpatrick, D. D. Duncan, and E. M. Wells-Gray, “Detrimental effects of speckle-pixel size matching in laser speckle contrast imaging,” Opt. Lett.33(24), 2886–2888 (2008). [CrossRef] [PubMed]
  37. Logitech, “Logitech USB Video Class (UVC) Device Feature list” (2009), retrieved May 3, 2013, http://wayback.archive.org/web/20110916202227/http://www.quickcamteam.net/devices/logitech_uvc_device_feature_list_by_device.pdf .
  38. L. Song and D. S. Elson, “Effect of signal intensity and camera quantization on laser speckle contrast analysis,” Biomed. Opt. Express4(1), 89–104 (2013). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited