OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 4, Iss. 11 — Nov. 1, 2013
  • pp: 2347–2361

Quantitative laser speckle flowmetry of the in vivo microcirculation using sidestream dark field microscopy

Annemarie Nadort, Rutger G. Woolthuis, Ton G. van Leeuwen, and Dirk J. Faber  »View Author Affiliations


Biomedical Optics Express, Vol. 4, Issue 11, pp. 2347-2361 (2013)
http://dx.doi.org/10.1364/BOE.4.002347


View Full Text Article

Enhanced HTML    Acrobat PDF (1855 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present integrated Laser Speckle Contrast Imaging (LSCI) and Sidestream Dark Field (SDF) flowmetry to provide real-time, non-invasive and quantitative measurements of speckle decorrelation times related to microcirculatory flow. Using a multi exposure acquisition scheme, precise speckle decorrelation times were obtained. Applying SDF-LSCI in vitro and in vivo allows direct comparison between speckle contrast decorrelation and flow velocities, while imaging the phantom and microcirculation architecture. This resulted in a novel analysis approach that distinguishes decorrelation due to flow from other additive decorrelation sources.

© 2013 Optical Society of America

OCIS Codes
(170.0180) Medical optics and biotechnology : Microscopy
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.6480) Medical optics and biotechnology : Spectroscopy, speckle
(170.2655) Medical optics and biotechnology : Functional monitoring and imaging

ToC Category:
Speckle Imaging and Diagnostics

History
Original Manuscript: July 25, 2013
Revised Manuscript: September 12, 2013
Manuscript Accepted: September 27, 2013
Published: October 7, 2013

Citation
Annemarie Nadort, Rutger G. Woolthuis, Ton G. van Leeuwen, and Dirk J. Faber, "Quantitative laser speckle flowmetry of the in vivo microcirculation using sidestream dark field microscopy," Biomed. Opt. Express 4, 2347-2361 (2013)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-4-11-2347


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. Fagrell, M. Intaglietta, “Microcirculation: its significance in clinical and molecular medicine,” J. Intern. Med. 241(5), 349–362 (1997). [CrossRef] [PubMed]
  2. K. R. Mathura, G. J. Bouma, C. Ince, “Abnormal microcirculation in brain tumours during surgery,” Lancet 358(9294), 1698–1699 (2001). [CrossRef] [PubMed]
  3. Y. Sakr, M. J. Dubois, D. De Backer, J. Creteur, J. L. Vincent, “Persistent microcirculatory alterations are associated with organ failure and death in patients with septic shock,” Crit. Care Med. 32(9), 1825–1831 (2004). [CrossRef] [PubMed]
  4. P. T. Goedhart, M. Khalilzada, R. Bezemer, J. Merza, C. Ince, “Sidestream Dark Field (SDF) imaging: a novel stroboscopic LED ring-based imaging modality for clinical assessment of the microcirculation,” Opt. Express 15(23), 15101–15114 (2007). [CrossRef] [PubMed]
  5. J. G. G. Dobbe, G. J. Streekstra, B. Atasever, R. van Zijderveld, C. Ince, “Measurement of functional microcirculatory geometry and velocity distributions using automated image analysis,” Med. Biol. Eng. Comput. 46(7), 659–670 (2008). [CrossRef] [PubMed]
  6. A. Fercher, J. Briers, “Flow visualization by means of single-exposure speckle photography,” Opt. Commun. 37(5), 326–330 (1981). [CrossRef]
  7. Z. Wang, S. Hughes, S. Dayasundara, R. S. Menon, “Theoretical and experimental optimization of laser speckle contrast imaging for high specificity to brain microcirculation,” J. Cereb. Blood Flow Metab. 27(2), 258–269 (2007). [CrossRef] [PubMed]
  8. H. Cheng, Q. Luo, Q. Liu, Q. Lu, H. Gong, S. Zeng, “Laser speckle imaging of blood flow in microcirculation,” Phys. Med. Biol. 49(7), 1347–1357 (2004). [CrossRef] [PubMed]
  9. M. Draijer, E. Hondebrink, T. Leeuwen, W. Steenbergen, “Review of laser speckle contrast techniques for visualizing tissue perfusion,” Lasers Med. Sci. 24(4), 639–651 (2009). [CrossRef] [PubMed]
  10. D. D. Duncan, S. J. Kirkpatrick, “Can laser speckle flowmetry be made a quantitative tool?” J. Opt. Soc. Am. A 25(8), 2088–2094 (2008). [CrossRef] [PubMed]
  11. A. B. Parthasarathy, W. J. Tom, A. Gopal, X. Zhang, A. K. Dunn, “Robust flow measurement with multi-exposure speckle imaging,” Opt. Express 16(3), 1975–1989 (2008). [CrossRef] [PubMed]
  12. R. Bezemer, E. Klijn, M. Khalilzada, A. Lima, M. Heger, J. van Bommel, C. Ince, “Validation of near-infrared laser speckle imaging for assessing microvascular (re) perfusion,” Microvasc. Res. 79(2), 139–143 (2010). [CrossRef] [PubMed]
  13. T. Durduran, R. Choe, W. Baker, A. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys. 73(7), 076701 (2010). [CrossRef]
  14. D. Bicout, G. Maret, “Multiple light scattering in Taylor-Couette flow,” Physica A 210(1-2), 87–112 (1994). [CrossRef]
  15. R. Bonner, R. Nossal, “Model for laser Doppler measurements of blood flow in tissue,” Appl. Opt. 20(12), 2097–2107 (1981). [CrossRef] [PubMed]
  16. A. B. Parthasarathy, S. M. Kazmi, A. K. Dunn, “Quantitative imaging of ischemic stroke through thinned skull in mice with Multi Exposure Speckle Imaging,” Biomed. Opt. Express 1(1), 246–259 (2010). [CrossRef] [PubMed]
  17. J. C. Ramirez-San-Juan, R. Ramos-García, I. Guizar-Iturbide, G. Martínez-Niconoff, B. Choi, “Impact of velocity distribution assumption on simplified laser speckle imaging equation,” Opt. Express 16(5), 3197–3203 (2008). [CrossRef] [PubMed]
  18. D. A. Boas, A. K. Dunn, “Laser speckle contrast imaging in biomedical optics,” J. Biomed. Opt. 15, 011109 (2010).
  19. P. Zakharov, A. Völker, A. Buck, B. Weber, F. Scheffold, “Quantitative modeling of laser speckle imaging,” Opt. Lett. 31(23), 3465–3467 (2006). [CrossRef] [PubMed]
  20. J. W. Goodman, Speckle phenomena in optics: theory and applications (Roberts and Company Publishers, Greenwood Village, CO, 2007).
  21. J. D. Briers, G. Richards, X. W. He, “Capillary blood flow monitoring using laser speckle contrast analysis (LASCA),” J. Biomed. Opt. 4(1), 164–175 (1999). [CrossRef] [PubMed]
  22. J. W. Goodman, “Some fundamental properties of speckle,” J. Opt. Soc. Am. A 66(11), 1145–1150 (1976). [CrossRef]
  23. A. K. Dunn, H. Bolay, M. A. Moskowitz, D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood Flow Metab. 21(3), 195–201 (2001). [CrossRef] [PubMed]
  24. R. Bandyopadhyay, A. Gittings, S. Suh, P. Dixon, D. Durian, “Speckle-visibility spectroscopy: A tool to study time-varying dynamics,” Rev. sci. Instrum. 76, 093110 (2005).
  25. T. Yoshimura, “Statistical properties of dynamic speckles,” J. Opt. Soc. Am. A 3(7), 1032–1054 (1986). [CrossRef]
  26. H. Cheng, Q. Luo, S. Zeng, S. Chen, J. Cen, H. Gong, “Modified laser speckle imaging method with improved spatial resolution,” J. Biomed. Opt. 8(3), 559–564 (2003). [CrossRef] [PubMed]
  27. D. D. Duncan, S. J. Kirkpatrick, R. K. Wang, “Statistics of local speckle contrast,” J. Opt. Soc. Am. A 25(1), 9–15 (2008). [CrossRef] [PubMed]
  28. J. Qiu, P. Li, W. Luo, J. Wang, H. Zhang, Q. Luo, “Spatiotemporal laser speckle contrast analysis for blood flow imaging with maximized speckle contrast,” J. Biomed. Opt. 15, 016003 (2010).
  29. D. M. de Bruin, R. H. Bremmer, V. M. Kodach, R. de Kinkelder, J. van Marle, T. G. van Leeuwen, D. J. Faber, “Optical phantoms of varying geometry based on thin building blocks with controlled optical properties,” J. Biomed. Opt. 15(2), 025001 (2010). [CrossRef] [PubMed]
  30. T. L. Alexander, J. E. Harvey, A. R. Weeks, “Average speckle size as a function of intensity threshold level: comparisonof experimental measurements with theory,” Appl. Opt. 33(35), 8240–8250 (1994). [CrossRef] [PubMed]
  31. S. J. Kirkpatrick, D. D. Duncan, E. M. Wells-Gray, “Detrimental effects of speckle-pixel size matching in laser speckle contrast imaging,” Opt. Lett. 33(24), 2886–2888 (2008). [CrossRef] [PubMed]
  32. O. Thompson, M. Andrews, E. Hirst, “Correction for spatial averaging in laser speckle contrast analysis,” Biomed. Opt. Express 2(4), 1021–1029 (2011). [CrossRef] [PubMed]
  33. J. M. Brown, A. J. Giaccia, “The unique physiology of solid tumors: opportunities (and problems) for cancer therapy,” Cancer Res. 58(7), 1408–1416 (1998). [PubMed]
  34. C. W. Song, “Effect of local hyperthermia on blood flow and microenvironment: a review,” Cancer Res. 44(10Suppl), 4721s–4730s (1984). [PubMed]
  35. V. M. Kodach, D. J. Faber, J. van Marle, T. G. van Leeuwen, J. Kalkman, “Determination of the scattering anisotropy with optical coherence tomography,” Opt. Express 19(7), 6131–6140 (2011). [CrossRef] [PubMed]
  36. H. Ullah, A. Mariampillai, M. Ikram, I. Vitkin, “Can temporal analysis of optical coherence tomography statistics report on dextrorotatory-glucose levels in blood?” Laser Phys. 21(11), 1962–1971 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: MPG (3770 KB)     
» Media 2: MPG (1622 KB)     
» Media 3: MPG (7896 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited