OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 4, Iss. 11 — Nov. 1, 2013
  • pp: 2463–2476

Photoacoustic measurement of refractive index of dye solutions and myoglobin for biosensing applications

Benjamin S. Goldschmidt, Smit Mehta, Jeff Mosley, Chris Walter, Paul J. D. Whiteside, Heather K. Hunt, and John A. Viator  »View Author Affiliations


Biomedical Optics Express, Vol. 4, Issue 11, pp. 2463-2476 (2013)
http://dx.doi.org/10.1364/BOE.4.002463


View Full Text Article

Enhanced HTML    Acrobat PDF (1476 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Current methods of determining the refractive index of chemicals and materials, such as ellipsometry and reflectometry, are limited by their inability to analyze highly absorbing or highly transparent materials, as well as the required prior knowledge of the sample thickness and estimated refractive index. Here, we present a method of determining the refractive index of solutions using the photoacoustic effect. We show that a photoacoustic refractometer can analyze highly absorbing dye samples to within 0.006 refractive index units of a handheld optical refractometer. Further, we use myoglobin, an early non-invasive biomarker for malignant hyperthermia, as a proof of concept that this technique is applicable for use as a medical diagnostic. Comparison of the speed, cost, simplicity, and accuracy of the techniques shows that this photoacoustic method is well-suited for optically complex systems.

© 2013 OSA

OCIS Codes
(170.1470) Medical optics and biotechnology : Blood or tissue constituent monitoring
(170.1610) Medical optics and biotechnology : Clinical applications
(240.0240) Optics at surfaces : Optics at surfaces
(240.6490) Optics at surfaces : Spectroscopy, surface
(240.7040) Optics at surfaces : Tunneling
(240.2130) Optics at surfaces : Ellipsometry and polarimetry

ToC Category:
Photoacoustic Imaging and Spectroscopy

History
Original Manuscript: June 18, 2013
Revised Manuscript: August 20, 2013
Manuscript Accepted: September 9, 2013
Published: October 14, 2013

Citation
Benjamin S. Goldschmidt, Smit Mehta, Jeff Mosley, Chris Walter, Paul J. D. Whiteside, Heather K. Hunt, and John A. Viator, "Photoacoustic measurement of refractive index of dye solutions and myoglobin for biosensing applications," Biomed. Opt. Express 4, 2463-2476 (2013)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-4-11-2463


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. O. Sydoruk, O. Zhernovaya, V. Tuchin, and A. Douplik, “Refractive index of solutions of human hemoglobin from the near-infrared to the ultraviolet range: Kramers-kronig analysis,” J. Biomed. Opt.17(2012). [CrossRef] [PubMed]
  2. A. S. Laurence, G. K. Vanner, W. Collins, and P. M. Hopkins, “Serum and urinary myoglobin following an aborted malignant hyperthermia reaction.” Anaesthesia51, 958–961 (1996). [CrossRef] [PubMed]
  3. A. S. Laurence, “Serum myoglobin and creatine kinase following surgery,” Brit. J. Anaesth.84, 763–766 (2000). [CrossRef] [PubMed]
  4. E. Hecht, Optics (4th Edition) (Addison Wesley, 2001), 4th ed.
  5. N. J. Harrick, Internal Reflection Spectroscopy (Harrick Scientific Corporation, 1987).
  6. R. Paschotta, “Rp photonics encyclopedia,” (2013).
  7. A. Rosencwaig and A. Gersho, “Theory of the photoacoustic effect with solids,” J. Appl. Phys.47, 64–69 (1976). [CrossRef]
  8. A. Rosencwaig, “Photoacoustic spectroscopy,” Annu. Rev. Biophys. Bio.9, 31–54 (1980). [CrossRef]
  9. L. Wang, “Multiscale photoacoustic microscopy and computed tomography,” Nat. Photonics3, 503–509 (2009). [CrossRef]
  10. D. McCormack, K. Bhattacharyya, R. Kannan, K. Katti, and J. Viator, “Enhanced photoacoustic detection of melanoma cells using gold nanoparticles,” Laser. Surg. Med.43, 333–338 (2011). [CrossRef]
  11. C. Hernandez, T. Murray, and S. Krishnaswamy, “Photoacoustic characterization of the mechanical properties of thin films,” Appl. Phys. Lett.80, 691–693 (2002). [CrossRef]
  12. J. B. Kinney and R. H. Staley, “Applications of photoacoustic spectroscopy,” (Annu. Rev. Inc., Palo Alto, Calif, USA, 1982), vol. 12, pp. 295–321.
  13. J. Viator, S. Jacques, and S. A. Prahl, “Depth profiling of absorbing soft materials using photoacoustic methods,” IEEE J. Sel. Top. Quant.5, 989–996 (1999). [CrossRef]
  14. B. Goldschmidt, A. Sudduth, E. Samson, P. Whiteside, K. Bhattacharyya, and J. Viator, “Total internal reflection photoacoustic spectroscopy for the detection of beta-hematin.” J. Biomed. Opt.17, 061212 (2012). [CrossRef]
  15. SPIE, Total internal reflection photoacoustic detection spectroscopy, 7899.
  16. T. Iwasaki, T. Sawada, H. Kamada, A. Fujishima, and K. Honda, “Observation of semiconductor electrode-dye solution interface by means of fluorescence and laser-induced photoacoustic spectroscopy,” J. Phys. Chem-US83, 2142–2145 (1979). [CrossRef]
  17. T. Hinoue, Y. Shimahara, and Y. Yokoyama, “Photoacoustic observation of solid-liquid interface by means of total internal reflection technique,” Chem. Lett.12, 225–228 (1983). [CrossRef]
  18. P. R. Muessig and G. J. Diebold, “Total internal reflectance optoacoustic spectroscopy,” J. Appl. Phys.54, 4251–4253 (1983). [CrossRef]
  19. T. Hinoue, Y. Shimahara, H. Murata, and Y. Yokoyama, “Photoacoustic spectrometry by total internal reflection technique: dependence of photoacoustic signal intensity on concentration and optical path,” Bunseki Kagaku33, E459–E466 (1984). [CrossRef]
  20. T. Hinoue, H. Murata, M. Kawabe, and Y. Yokoyama, “Effects of thermal diffusion and solvent materials on photoacoustics signals in total internal reflection technique,” Anal. Sci.2, 407–410 (1986). [CrossRef]
  21. T. Inagaki, J. Goudonnet, P. Royer, and E. Arakawa, “Optical properties of silver island films in the attenuated-total-reflection geometry,” Appl. Optics25, 3635–3639 (1986). [CrossRef]
  22. T. Hinoue, H. Murata, and Y. Yokoyama, “Photoacoustic spectrometry coupled with total internal reflection technique: theory and experiment,” Anal. Sci.2, 401–406 (1986). [CrossRef]
  23. T. Hinoue, M. Kawabe, and Y. Yokoyama, “Measurement of concentration profile of dye at glass-solution interface by photoacoustic spectrometry coupled with total internal reflection technique,” Chem. Soc. Japan60, 3811–3813 (1987). [CrossRef]
  24. J. Goudonnet, T. Inagaki, E. Arakawa, and T. Ferrell, “Angular and polarization dependence of surface-enhanced raman scattering in attenuated-total-reflection geometry,” Phys. Rev. B36, 917–921 (1987). [CrossRef]
  25. P. Royer, J. P. Goudonnet, T. Inagaki, G. Chabrier, and E. T. Arakawa, “Photoacoustic study of the optical absorption of oblate silver spheroids in attenuated-total-reflection geometry,” Phys. Status Solidi A105, 617–625 (1988). [CrossRef]
  26. T. Hinoue, M. Kawabe, S. Doi, and Y. Yokoyama, “Photoacoustic estimation of reflectivities at solid-liquid interfaces by using total internal reflection technique,” J. Surf. Sci. Soc. Japan10, 47–52 (1989).
  27. T. Inagaki, M. Motosuga, E. Arakawa, and J. Goudonnet, “Coupled surface plasmons in periodically corrugated thin silver films,” Phys. Rev. B32, 6238–6245 (1985). [CrossRef]
  28. S. Negm and H. Talaat, “Effect of intrinsic surface roughness and other decay processes on surface plasmon polariton resonance halfwidth,” Ultrason.1, 509–514 (1992).
  29. B. Rothenhausler, J. Rabe, P. Korpiun, and W. Knoll, “On the decay of plasmon surface polaritons at smooth and rough ag-air interfaces: A reflectance and photo-acoustic study,” Surf. Sci.137, 373–383 (1984). [CrossRef]
  30. K. Sathiyamoorthy, J. Joseph, C. J. Hon, and M. V. Matham, “Photoacoustic based surface plasmon resonance spectroscopy: an investigation,” pp. 80010K–80010K–8 (2011).
  31. K. Sathiyamoorthy, J. Joseph, C. Hon, and M. Matham, “Photoacoustic based surface plasmon resonance spectroscopy: An investigation,” (Braga, 2011), vol. 8001.
  32. H. Talaat, J. Bucaro, W. Huang, and A. Macdiarmid, “Photoacoustic detection of plasmon surface polaritons in heavily doped polyacetylene films,” Synthetic Met.10, 245–253 (1985). [CrossRef]
  33. C. S. Jung, G. Park, and Y. D. Kim, “Photoacoustic determination of field enhancement at a silver surface arising from resonant surface plasmon excitation,” Appl. Phys. Lett.47, 1165–1167 (1985). [CrossRef]
  34. T. Inagaki, Y. Nakagawa, E. Arakawa, and D. Aas, “Photoacoustic determination of radiative quantum efficiency of surface plasmons in silver films,” Phys. Rev. B26, 6421–6430 (1982). [CrossRef]
  35. T. Inagaki, K. Kagami, and E. Arakawa, “Photoacoustic observation of nonradiative decay of surface plasmons in silver,” Phys. Rev. B24, 3644–3646 (1981). [CrossRef]
  36. Y. Jiang, S. Zhang, F. Qian, and H. Shao, “Photoacoustic plasmon resonance spectra of langmuir-blodgett films,” (Editions de Physique, Les Ulis, France, Guadeloupe, Fr, 1994), vol. 4, pp. C7–35–38.
  37. Y. S. Jiang, S. Y. Zhang, F. Qian, and H. P. Shao, “Photoacoustic plasmon resonance spectra of langmuir-blodgett films,” J. Phys. IV France04, C7–35–C7–38 (1994). [CrossRef]
  38. T. Inagaki, K. Kagami, and E. Arakawa, “Photoacoustic study of surface plasmons in metals,” Appl. Optics21, 949–954 (1982). [CrossRef]
  39. S. Negm, H. Talaat, and J. Pelzl, “Photoacoustic study of surface roughness on thin evaporated gold films,” (Publ by IEEE, Piscataway, NJ, United States, Baltimore, MD, USA, 1993), vol. 2, pp. 1259–1261.
  40. H. Talaat and H. Dardy, “Photoacoustic study of the interaction of surface plasmons and monolayers of dye molecules,” (IEEE, New York, NY, USA, Atlanta, Ga, USA, 1983), vol. 2, pp. 700–703.
  41. T. Abdallah, S. Negm, and H. Talaat, “Photoacoustic surface plasmon for the detection of nicotine,” Egypt. J. Sol.25, 181–189 (2002).
  42. S. Negm and H. Talaat, “Radiative and non-radiative decay of surface plasmons in thin metal films,” Solid State Commun.84, 133–137 (1992). Cited By (since 1996) 5. [CrossRef]
  43. S. Negm and H. Talaat, “Surface plasmon resonance halfwidths as measured using attenuated total reflection, forward scattering and photoacoustics,” J. Phys.-Condens. Mat.1, 10201–10205 (1989). [CrossRef]
  44. Y. Shen, S. Zhang, Y. Jiang, R. Zhu, and Y. Wei, “Angular resonance absorption spectra of langmuir-blodgett films studied by the photoacoustic technique,” Thin Solid Films248, 36–40 (1994). [CrossRef]
  45. M. Xu, S. Zhang, and T. Inagaki, “Investigation of optical resonance absorption on bigratings by photoacoustic angular spectroscopy,” Shengxue Xuebao/Acta Acust..25, 440–444 (2000). Cited By (since 1996) 0.
  46. Y. Jiang, S. Zhang, H. Shao, and C. Yuan, “Optical properties of langmuir-blodgett films investigated by a photoacoustic technique,” Appl. Optics34, 169–173 (1995). [CrossRef]
  47. Ultrasonics International, Photoacoustic resonance absorption spectra of langmuir-blodgett films.
  48. R. W. Stineman, “A consistently well-behaved method of interpolation,” Creative Comput. pp. 54–57 (1980).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited