OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 4, Iss. 11 — Nov. 1, 2013
  • pp: 2619–2628

Epidural catheter with integrated light guides for spectroscopic tissue characterization

R. P. Soto-Astorga, S. West, S. Putnis, J. C. Hebden, and A. E. Desjardins  »View Author Affiliations


Biomedical Optics Express, Vol. 4, Issue 11, pp. 2619-2628 (2013)
http://dx.doi.org/10.1364/BOE.4.002619


View Full Text Article

Enhanced HTML    Acrobat PDF (1638 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Epidural catheters are used to deliver anesthetics and opioids for managing pain in many clinical scenarios. Currently, epidural catheter insertion is performed without information about the tissues that are directly ahead of the catheter. As a result, the catheter can be incorrectly positioned within a blood vessel, which can cause toxicity. Recent studies have shown that optical reflectance spectroscopy could be beneficial for guiding needles that are used to insert catheters. In this study, we investigate the whether this technique could benefit the placement of catheters within the epidural space. We present a novel optical epidural catheter with integrated polymer light guides that allows for optical spectra to be acquired from tissues at the distal tip. To obtain an initial indication of the information that could be obtained, reflectance values and photon penetration depth were estimated using Monte Carlo simulations, and optical reflectance spectra were acquired during a laminectomy of a swine ex vivo. Large differences between the spectra acquired from epidural adipose tissue and from venous blood were observed. The optical catheter has the potential to provide real-time detection of intravascular catheter placement that could reduce the risk of complications.

© 2013 Optical Society of America

OCIS Codes
(170.3890) Medical optics and biotechnology : Medical optics instrumentation
(170.6510) Medical optics and biotechnology : Spectroscopy, tissue diagnostics

ToC Category:
Spectroscopic Diagnostics

History
Original Manuscript: August 26, 2013
Manuscript Accepted: August 27, 2013
Published: October 24, 2013

Citation
R. P. Soto-Astorga, S. West, S. Putnis, J. C. Hebden, and A. E. Desjardins, "Epidural catheter with integrated light guides for spectroscopic tissue characterization," Biomed. Opt. Express 4, 2619-2628 (2013)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-4-11-2619


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. A. Reina, A. López García, J. A. de Andrés, F. Sellers, M. Arrizabalaga, M. J. Mora, “Variation in the thickness of the dural sac,” Rev. Esp. Anestesiol. Reanim. 46(8), 344–349 (1999). [PubMed]
  2. M. A. Reina, P. Pulido, J. Castedo, M. C. Villanueva, A. López, R. G. Sola, “Characteristics and distribution of normal human epidural fat,” Rev. Esp. Anestesiol. Reanim. 53(6), 363–372 (2006). [PubMed]
  3. J. Abbas, K. Hamoud, Y. M. Masharawi, H. May, O. Hay, B. Medlej, N. Peled, I. Hershkovitz, “Ligamentum flavum thickness in normal and stenotic lumbar spines,” Spine 35(12), 1225–1230 (2010). [PubMed]
  4. J. Guay, “The epidural test dose: A review,” Anesth. Analg. 102(3), 921–929 (2006). [CrossRef] [PubMed]
  5. T. Fivez, S. Deblonde, M. Van de Velde, “Late intravascular migration of a previously well functioning labour epidural catheter,” Eur. J. Anaesthesiol. 27(7), 634–636 (2010). [CrossRef] [PubMed]
  6. S. M. Burns, C. M. Cowa, P. M. Barclay, R. G. Wilkes, “Intrapartum epidural catheter migration: A comparative study of three dressing applications,” Br. J. Anaesth. 86(4), 565–567 (2001). [CrossRef] [PubMed]
  7. C. K. Ting, M. Y. Tsou, P. T. Chen, K. Y. Chang, M. S. Mandell, K. H. Chan, Y. Chang, “A new technique to assist epidural needle placement: Fiberoptic-guided insertion using two wavelengths,” Anesthesiology 112(5), 1128–1135 (2010). [CrossRef] [PubMed]
  8. J. P. Rathmell, A. E. Desjardins, M. van der Voort, B. H. W. Hendriks, R. Nachabe, S. Roggeveen, D. Babic, M. Söderman, M. Brynolf, B. Holmström, “Identification of the epidural space with optical spectroscopy: An in vivo swine study,” Anesthesiology 113(6), 1406–1418 (2010). [CrossRef] [PubMed]
  9. A. E. Desjardins, B. H. W. Hendriks, M. van der Voort, R. Nachabé, W. Bierhoff, G. Braun, D. Babic, J. P. Rathmell, S. Holmin, M. Söderman, B. Holmström, “Epidural needle with embedded optical fibers for spectroscopic differentiation of tissue: Ex vivo feasibility study,” Biomed. Opt. Express 2(6), 1452–1461 (2011). [CrossRef] [PubMed]
  10. S. P. Lin, M. S. Mandell, Y. Chang, P. T. Chen, M. Y. Tsou, K. H. Chan, C. K. Ting, “Discriminant analysis for anaesthetic decision-making: An intelligent recognition system for epidural needle insertion,” Br. J. Anaesth. 108(2), 302–307 (2012). [CrossRef] [PubMed]
  11. M. Brynolf, M. Sommer, A. E. Desjardins, M. van der Voort, S. Roggeveen, W. Bierhoff, B. H. W. Hendriks, J. P. Rathmell, A. G. H. Kessels, M. Söderman, B. Holmström, “Optical detection of the brachial plexus for peripheral nerve blocks: An in vivo swine study,” Reg. Anesth. Pain Med. 36(4), 350–357 (2011). [CrossRef] [PubMed]
  12. A. Balthasar, A. E. Desjardins, M. van der Voort, G. W. Lucassen, S. Roggeveen, K. Wang, W. Bierhoff, A. G. H. Kessels, M. van Kleef, M. Sommer, “Optical detection of peripheral nerves: An in vivo human study,” Reg. Anesth. Pain Med. 37(3), 277–282 (2012). [CrossRef] [PubMed]
  13. A. Balthasar, A. E. Desjardins, M. van der Voort, G. W. Lucassen, S. Roggeveen, K. Wang, W. Bierhoff, A. G. H. Kessels, M. Sommer, M. van Kleef, “Optical Detection of Vascular Penetration During Nerve Blocks: An In Vivo Human Study,” Reg. Anesth. Pain Med. 37(1), 3–7 (2012). [CrossRef] [PubMed]
  14. J. Zubia, J. Arrue, “Plastic optical fibers: An introduction to their technological processes and applications,” Opt. Fiber Technol. 7(2), 101–140 (2001). [CrossRef]
  15. S. A. Prahl, M. Keijzer, S. L. Jacques, A. J. Welch, “A Monte Carlo model of light propagation in tissue,” SPIE Institute Series. IS5, 102–111 (1989).
  16. M. Friebel, A. Roggan, G. Müller, M. Meinke, “Determination of optical properties of human blood in the spectral range 250 to 1100 nm using Monte Carlo simulations with hematocrit-dependent effective scattering phase functions,” J. Biomed. Opt. 11(3), 034021 (2006). [CrossRef] [PubMed]
  17. A. N. Bashkatov, E. A. Genina, V. I. Kochubey, V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D Appl. Phys. 38(15), 2543–2555 (2005). [CrossRef]
  18. R. L. P. van Veen, H. J. C. M. Sterenborg, A. Pifferi, A. Torricelli, and R. Cubeddu, “Determination of VIS- NIR absorption coefficients of mammalian fat, with time and spatially resolved diffuse reflectance and transmission spectroscopy,” OSA Annual BIOMED Topical Meeting (2004)
  19. S. Prahl, “Optical Absorption of Hemoglobin”. http://omlc.ogi.edu/spectra/hemoglobin
  20. D. Arifler, C. MacAulay, M. Follen, R. Richards-Kortum, “Spatially resolved reflectance spectroscopy for diagnosis of cervical precancer: Monte Carlo modeling and comparison to clinical measurements,” J. Biomed. Opt. 11(6), 064027 (2006). [CrossRef] [PubMed]
  21. U. Utzinger, R. R. Richards-Kortum, “Fiber optic probes for biomedical optical spectroscopy,” J. Biomed. Opt. 8(1), 121–147 (2003). [CrossRef] [PubMed]
  22. M. Meinke, G. Müller, J. Helfmann, M. Friebel, “Optical properties of platelets and blood plasma and their influence on the optical behavior of whole blood in the visible to near infrared wavelength range,” J. Biomed. Opt. 12(1), 014024 (2007). [CrossRef] [PubMed]
  23. W. White, “Perfluorinated Graded Index Plastic Optical Fiber GigaPOF®”. http://www.chromisfiber.com/pdf/OFC2010Wwhite1105.pdf

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited