OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 4, Iss. 12 — Dec. 1, 2013
  • pp: 2712–2728

A combined machine-learning and graph-based framework for the segmentation of retinal surfaces in SD-OCT volumes

Bhavna J. Antony, Michael D. Abràmoff, Matthew M. Harper, Woojin Jeong, Elliott H. Sohn, Young H. Kwon, Randy Kardon, and Mona K. Garvin  »View Author Affiliations


Biomedical Optics Express, Vol. 4, Issue 12, pp. 2712-2728 (2013)
http://dx.doi.org/10.1364/BOE.4.002712


View Full Text Article

Acrobat PDF (15963 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Optical coherence tomography is routinely used clinically for the detection and management of ocular diseases as well as in research where the studies may involve animals. This routine use requires that the developed automated segmentation methods not only be accurate and reliable, but also be adaptable to meet new requirements. We have previously proposed the use of a graph-theoretic approach for the automated 3-D segmentation of multiple retinal surfaces in volumetric human SD-OCT scans. The method ensures the global optimality of the set of surfaces with respect to a cost function. Cost functions have thus far been typically designed by hand by domain experts. This difficult and time-consuming task significantly impacts the adaptability of these methods to new models. Here, we describe a framework for the automated machine-learning based design of the cost function utilized by this graph-theoretic method. The impact of the learned components on the final segmentation accuracy are statistically assessed in order to tailor the method to specific applications. This adaptability is demonstrated by utilizing the method to segment seven, ten and five retinal surfaces from SD-OCT scans obtained from humans, mice and canines, respectively. The overall unsigned border position errors observed when using the recommended configuration of the graph-theoretic method was 6.45 ± 1.87 μm, 3.35 ± 0.62 μm and 9.75 ± 3.18 μm for the human, mouse and canine set of images, respectively.

© 2013 OSA

OCIS Codes
(100.0100) Image processing : Image processing
(100.2000) Image processing : Digital image processing
(100.6890) Image processing : Three-dimensional image processing
(110.4500) Imaging systems : Optical coherence tomography
(100.4994) Image processing : Pattern recognition, image transforms

ToC Category:
Image Processing

History
Original Manuscript: August 16, 2013
Revised Manuscript: October 24, 2013
Manuscript Accepted: October 27, 2013
Published: November 1, 2013

Citation
Bhavna J. Antony, Michael D. Abràmoff, Matthew M. Harper, Woojin Jeong, Elliott H. Sohn, Young H. Kwon, Randy Kardon, and Mona K. Garvin, "A combined machine-learning and graph-based framework for the segmentation of retinal surfaces in SD-OCT volumes," Biomed. Opt. Express 4, 2712-2728 (2013)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-4-12-2712


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. F. Medeiros, L. Zangwill, C. Bowd, R. Vessani, S. Remo, and R. N. Weinreb, “Evaluation of retinal nerve fiber layer, optic nerve head, and macular thickness measurements for glaucoma detection using optical coherence tomography,” Am. J. Ophthalmol.139, 44–55 (2005). [CrossRef] [PubMed]
  2. G. Huber, S. C. Beck, C. Grimm, A. Sahaboglu-Tekgoz, F. Paquet-Durand, A. Wenzel, P. Humphries, T. M. Redmond, M. W. Seeliger, and M. D. Fischer, “Spectral domain optical coherence tomography in mouse models of retinal degeneration,” Invest. Ophthalmol. Vis. Sci.50, 5888–5895 (2009). [CrossRef] [PubMed]
  3. Y. Muraoka, H. O. Ikeda, N. Nakano, M. Hangai, Y. Toda, K. Okamoto-Furuta, H. Kohda, M. Kondo, H. Terasaki, A. Kakizuka, and N. Yoshimura, “Real-time imaging of rabbit retina with retinal degeneration by using spectral-domain optical coherence tomography,” PloS One7, e36135 (2012). [CrossRef] [PubMed]
  4. T. J. Bailey, D. H. Davis, J. E. Vance, and D. R. Hyde, “Spectral-domain optical coherence tomography as a noninvasive method to assess damaged and regenerating adult zebrafish retinas,” Invest. Ophthalmol. Vis. Sci.53, 3126–3138 (2012). [CrossRef] [PubMed]
  5. E. Hernandez-Merino, H. Kecova, S. J. Jacobson, K. N. Hamouche, R. N. Nzokwe, and S. D. Grozdanic, “Spectral domain optical coherence tomography (SD-OCT) assessment of the healthy female canine retina and optic nerve,” Vet. Ophthalmol.14, 400–405 (2011). [CrossRef] [PubMed]
  6. M. E. Pennesi, K. V. Michaels, S. S. Magee, A. Maricle, S. P. Davin, A. K. Garg, M. J. Gale, D. C. Tu, Y. Wen, L. R. Erker, and P. J. Francis, “Long-term characterization of retinal degeneration in rd1 and rd10 mice using spectral domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.53, 4644–4656 (2012). [CrossRef] [PubMed]
  7. A. Mishra, A. Wong, K. Bizheva, and D. A. Clausi, “Intra-retinal layer segmentation in optical coherence tomography images,” Opt. Express17, 23719–23728 (2009). [CrossRef]
  8. A. Yazdanpanah, G. Hamarneh, B. R. Smith, and M. V. Sarunic, “Segmentation of intra-retinal layers from optical coherence tomography images using an active contour approach,” IEEE Trans. Med. Imag.30, 484–496 (2011). [CrossRef]
  9. M. L. Gabriele, H. Ishikawa, J. S. Schuman, R. A. Bilonick, J. Kim, L. Kagemann, and G. Wollstein, “Reproducibility of spectral-domain optical coherence tomography total retinal thickness measurements in mice,” Invest. Ophthalmol. Vis. Sci.51, 6519–6523 (2010). [CrossRef] [PubMed]
  10. R. J. Zawadzki, A. R. R. Fuller, D. F. F. Wiley, B. Hamann, S. S. S. Choi, and J. S. S. Werner, “Adaptation of a support vector machine algorithm for segmentation and visualization of retinal structures in volumetric optical coherence tomography data sets,” J. Biomed. Opt.12, 41206 (2007). [CrossRef]
  11. A. M. Bagci, M. Shahidi, R. Ansari, M. Blair, N. P. Blair, and R. Zelkha, “Thickness profiles of retinal layers by optical coherence tomography image segmentation,” Am. J. Ophthalmol.146, 679–687 (2008). [CrossRef] [PubMed]
  12. T. Fabritius, S. Makita, M. Miura, R. Myllylä, and Y. Yasuno, “Automated segmentation of the macula by optical coherence tomography.” Opt. Express17, 15659–15669 (2009). [CrossRef] [PubMed]
  13. O. Tan, V. Chopra, A. T.-H. Lu, J. S. Schuman, H. Ishikawa, G. Wollstein, R. Varma, and D. Huang, “Detection of macular ganglion cell loss in glaucoma by Fourier-domain optical coherence tomography,” Ophthalmology116, 2305–2314 (2009). [CrossRef] [PubMed]
  14. F. Rossant, I. Ghorbel, I. Bloch, M. Paques, and S. Tick, “Automated segmentation of retinal layers in OCT imaging and derived ophthalmic measures,” in Proceedings of IEEE International Symposium on Biomedical Imaging: From Nano to Macro (IEEE, 2009) pp. 1370–1373.
  15. V. Kajić, B. Povazay, B. Hermann, B. Hofer, D. Marshall, P. L. Rosin, and W. Drexler, “Robust segmentation of intraretinal layers in the normal human fovea using a novel statistical model based on texture and shape analysis,” Opt. Express18, 14730–14744 (2010). [CrossRef]
  16. S. J. Chiu, X. T. Li, P. Nicholas, C. A. Toth, J. A. Izatt, and S. Farsiu, “Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation,” Opt. Express18, 19413–19428 (2010). [CrossRef] [PubMed]
  17. F. Rathke, S. Schmidt, and C. Schnörr, “Order preserving and shape prior constrained intra-retinal layer segmentation in optical coherence tomography,” in Proceedings of Medical Image Computing and Computer-Assisted Intervention (Springer, 2011) vol. 14 pp. 370–377.
  18. K. A. Vermeer, J. van der Schoot, H. G. Lemij, and J. F. de Boer, “Automated segmentation by pixel classification of retinal layers in ophthalmic OCT images,” Biomed. Opt. Express2, 1743–1756 (2011). [CrossRef] [PubMed]
  19. A. Lang, A. Carass, M. Hauser, E. S. Sotirchos, P. A. Calabresi, H. S. Ying, and J. L. Prince, “Retinal layer segmentation of macular OCT images using boundary classification,” Biomed. Opt. Express4, 1133–1152 (2013). [CrossRef] [PubMed]
  20. P. A. Dufour, L. Ceklic, H. Abdillahi, S. Schröder, S. De Dzanet, U. Wolf-Schnurrbusch, and J. Kowal, “Graph-based multi-surface segmentation of OCT data using trained hard and soft constraints,” IEEE Trans. Med. Imag.32, 531–543 (2013). [CrossRef]
  21. M. K. Garvin, M. D. Abràmoff, X. Wu, S. R. Russell, T. L. Burns, and M. Sonka, “Automated 3-D intraretinal layer segmentation of macular spectral-domain optical coherence tomography images,” IEEE Trans. Med. Imag.28, 1436–1447 (2009). [CrossRef]
  22. A. Lang, A. Carass, E. Sotirchos, P. Calabresi, and J. L. Prince, “Segmentation of retinal OCT images using a random forest classifier,” in Proc. SPIE Medical Imaging8669, 86690R (2013). [CrossRef]
  23. B. J. Antony, M. D. Abràmoff, M. Sonka, Y. H. Kwon, and M. K. Garvin, “Incorporation of texture-based features in optimal graph-theoretic approach with application to the 3-D Segmentation of intraretinal surfaces in SD-OCT volumes,” in Proc. SPIE Medical Imaging8314, 83141G (2012). [CrossRef]
  24. K. Li, X. Wu, D. Z. Chen, and M. Sonka, “Optimal surface segmentation in volumetric images–a graph-theoretic approach,” IEEE Trans. Pattern Anal. Mach. Intell.28, 119–134 (2006). [CrossRef] [PubMed]
  25. M. Niemeijer, J. J. Staal, B. van Ginneken, M. Loog, and M. D. Abràmoff, “Comparative study of retinal vessel segmentation methods on a new publicly available database,” in Proc. of SPIE Medical Imaging5370, 648–656 (2004). [CrossRef]
  26. M. D. Abràmoff, W. L. M. Alward, E. C. Greenlee, L. Shuba, C. Y. Kim, J. H. Fingert, and Y. H. Kwon, “Automated segmentation of the optic disc from stereo color photographs using physiologically plausible features,” Invest Ophthalmol Vis Sci48, 1665–1673 (2007). [CrossRef] [PubMed]
  27. P. Viola, O. M. Way, and M. J. Jones, “Robust real-time face detection,” Int. J. Computer Vision57, 137–154 (2004). [CrossRef]
  28. S. E. Grigorescu, N. Petkov, and P. Kruizinga, “Comparison of texture features based on Gabor filters,” IEEE Trans. Image Proc.11, 1160–1167 (2002). [CrossRef]
  29. G. Quellec, S. R. Russell, and M. D. Abràmoff, “Optimal filter framework for automated, instantaneous detection of lesions in retinal images,” IEEE Trans. Med. Imag.30, 523–533 (2011). [CrossRef]
  30. W. Freeman and E. Adelson, “The design and use of steerable filters,” IEEE Trans. Pattern Anal. Mach. Intell.13, 891–906 (1991). [CrossRef]
  31. L. Breiman, “Random forests,” Machine learning45, 5–32 (2001). [CrossRef]
  32. B. J. Antony, M. D. Abràmoff, K. Lee, P. Sonkova, P. Gupta, Y. Kwon, M. Niemeijer, Z. Hu, and M. K. Garvin, “Automated 3D segmentation of intraretinal layers from optic nerve head optical coherence tomography images,” Proc. of SPIE Medical Imaging7626, 76260U (2010). [CrossRef]
  33. B. J. Antony, M. D. Abràmoff, W. Jeong, E. H. Sohn, and M. K. Garvin, “Segmentation of multiple intra-retinal surfaces in volumetric SD-OCT images of mouse eyes using an improved Iowa reference algorithm,” Invest. Ophthalmol. Vis. Sci. E-Abstract 4892 (May2013).
  34. N. Nakano, H. O. Ikeda, M. Hangai, Y. Muraoka, Y. Toda, A. Kakizuka, and N. Yoshimura, “Longitudinal and simultaneous imaging of retinal ganglion cells and inner retinal layers in a mouse model of glaucoma induced by N-methyl-D-aspartate,” Invest. Ophthalmol. Vis. Sci.52, 8754–62 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited