OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 4, Iss. 12 — Dec. 1, 2013
  • pp: 2729–2750

Semi-automatic geographic atrophy segmentation for SD-OCT images

Qiang Chen, Luis de Sisternes, Theodore Leng, Luoluo Zheng, Lauren Kutzscher, and Daniel L. Rubin  »View Author Affiliations

Biomedical Optics Express, Vol. 4, Issue 12, pp. 2729-2750 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (3016 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Geographic atrophy (GA) is a condition that is associated with retinal thinning and loss of the retinal pigment epithelium (RPE) layer. It appears in advanced stages of non-exudative age-related macular degeneration (AMD) and can lead to vision loss. We present a semi-automated GA segmentation algorithm for spectral-domain optical coherence tomography (SD-OCT) images. The method first identifies and segments a surface between the RPE and the choroid to generate retinal projection images in which the projection region is restricted to a sub-volume of the retina where the presence of GA can be identified. Subsequently, a geometric active contour model is employed to automatically detect and segment the extent of GA in the projection images. Two image data sets, consisting on 55 SD-OCT scans from twelve eyes in eight patients with GA and 56 SD-OCT scans from 56 eyes in 56 patients with GA, respectively, were utilized to qualitatively and quantitatively evaluate the proposed GA segmentation method. Experimental results suggest that the proposed algorithm can achieve high segmentation accuracy. The mean GA overlap ratios between our proposed method and outlines drawn in the SD-OCT scans, our method and outlines drawn in the fundus auto-fluorescence (FAF) images, and the commercial software (Carl Zeiss Meditec proprietary software, Cirrus version 6.0) and outlines drawn in FAF images were 72.60%, 65.88% and 59.83%, respectively.

© 2013 Optical Society of America

OCIS Codes
(100.0100) Image processing : Image processing
(110.4500) Imaging systems : Optical coherence tomography
(170.4470) Medical optics and biotechnology : Ophthalmology

ToC Category:
Image Processing

Original Manuscript: August 16, 2013
Revised Manuscript: October 17, 2013
Manuscript Accepted: October 19, 2013
Published: November 1, 2013

Qiang Chen, Luis de Sisternes, Theodore Leng, Luoluo Zheng, Lauren Kutzscher, and Daniel L. Rubin, "Semi-automatic geographic atrophy segmentation for SD-OCT images," Biomed. Opt. Express 4, 2729-2750 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. J. Wang, E. Rochtchina, A. J. Lee, E. M. Chia, W. Smith, R. G. Cumming, and P. Mitchell, “Ten-year incidence and progression of age-related maculopathy: the blue Mountains Eye Study,” Ophthalmology114(1), 92–98 (2007). [CrossRef] [PubMed]
  2. R. Klein, B. E. Klein, M. D. Knudtson, S. M. Meuer, M. Swift, and R. E. Gangnon, “Fifteen-year cumulative incidence of age-related macular degeneration: the Beaver Dam Eye Study,” Ophthalmology114(2), 253–262 (2007). [CrossRef] [PubMed]
  3. H. Buch, N. V. Nielsen, T. Vinding, G. B. Jensen, J. U. Prause, and M. la Cour, “14-year incidence, progression, and visual morbidity of age-related maculopathy: the Copenhagen City Eye Study,” Ophthalmology112(5), 787–798 (2005). [CrossRef] [PubMed]
  4. P. Maguire and A. K. Vine, “Geographic atrophy of the retinal pigment epithelium,” Am. J. Ophthalmol.102(5), 621–625 (1986). [PubMed]
  5. H. Schatz and H. R. McDonald, “Atrophic macular degeneration. Rate of spread of geographic atrophy and visual loss,” Ophthalmology96(10), 1541–1551 (1989). [PubMed]
  6. J. S. Sunness, “The natural history of geographic atrophy, the advanced atrophic form of age-related macular degeneration,” Mol. Vis.5, 25 (1999). [PubMed]
  7. R. G. Sayegh, C. Simader, U. Scheschy, A. Montuoro, C. Kiss, S. Sacu, D. P. Kreil, C. Prünte, and U. Schmidt-Erfurth, “A systematic comparison of spectral-domain optical coherence tomography and fundus autofluorescence in patients with geographic atrophy,” Ophthalmology118(9), 1844–1851 (2011). [CrossRef] [PubMed]
  8. R. Klein, B. E. Klein, and T. Franke, “The relationship of cardiovascular disease and its risk factors to age-related maculopathy. The Beaver Dam Eye Study,” Ophthalmology100(3), 406–414 (1993). [PubMed]
  9. J. R. Vingerling, I. Dielemans, A. Hofman, D. E. Grobbee, M. Hijmering, C. F. Kramer, and P. T. de Jong, “The prevalence of age-related maculopathy in the Rotterdam Study,” Ophthalmology102(2), 205–210 (1995). [CrossRef] [PubMed]
  10. H. Hirvelä, H. Luukinen, E. Läärä, and L. Laatikainen, “Risk factors of age-related maculopathy in a population 70 years of age or older,” Ophthalmology103(6), 871–877 (1996). [CrossRef] [PubMed]
  11. A. Bindewald, A. C. Bird, S. S. Dandekar, J. Dolar-Szczasny, J. Dreyhaupt, F. W. Fitzke, W. Einbock, F. G. Holz, J. J. Jorzik, C. Keilhauer, N. Lois, J. Mlynski, D. Pauleikhoff, G. Staurenghi, and S. Wolf, “Classification of fundus autofluorescence patterns in early age-related macular disease,” Invest. Ophthalmol. Vis. Sci.46(9), 3309–3314 (2005). [CrossRef] [PubMed]
  12. S. Schmitz-Valckenberg, C. K. Brinkmann, F. Alten, P. Herrmann, N. K. Stratmann, A. P. Göbel, M. Fleckenstein, M. Diller, G. J. Jaffe, and F. G. Holz, “Semiautomated image processing method for identification and quantification of geographic atrophy in age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci.52(10), 7640–7646 (2011). [CrossRef] [PubMed]
  13. A. Deckert, S. Schmitz-Valckenberg, J. Jorzik, A. Bindewald, F. G. Holz, and U. Mansmann, “Automated analysis of digital fundus autofluorescence images of geographic atrophy in advanced age-related macular degeneration using confocal scanning laser ophthalmoscopy (cSLO),” BMC Ophthalmol.5(1), 8 (2005). [CrossRef] [PubMed]
  14. N. Lee, A. F. Laine, I. Barbazetto, M. Busuoic, and R. Smith, “Level set segmentation of geographic atrophy in macular autofluorescence images,” Invest. Ophthalmol. Vis. Sci.47, (2006).
  15. N. Lee, A. F. Laine, and R. T. Smith, “A hybrid segmentation approach for geographic atrophy in fundus auto-fluorescence images for diagnosis of age-related macular degeneration,” Proceeding of the 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (2007), pp. 4965–4968. [CrossRef]
  16. N. Lee, R. T. Smith, and A. F. Laine, “Interactive segmentation for geographic atrophy in retinal fundus images,” The 42nd Asilomar Conference on Signals, Systems and Computers (2008), 42, pp. 655–658. [CrossRef]
  17. U. E. Wolf-Schnurrbusch, V. Enzmann, C. K. Brinkmann, and S. Wolf, “Morphologic changes in patients with geographic atrophy assessed with a novel spectral OCT-SLO combination,” Invest. Ophthalmol. Vis. Sci.49(7), 3095–3099 (2008). [CrossRef] [PubMed]
  18. S. Bearelly, F. Y. Chau, A. Koreishi, S. S. Stinnett, J. A. Izatt, and C. A. Toth, “Spectral domain optical coherence tomography imaging of geographic atrophy margins,” Ophthalmology116(9), 1762–1769 (2009). [CrossRef] [PubMed]
  19. M. Brar, I. Kozak, L. Cheng, D. U. Bartsch, R. Yuson, N. Nigam, S. F. Oster, F. Mojana, and W. R. Freeman, “Correlation between spectral-domain optical coherence tomography and fundus autofluorescence at the margins of geographic atrophy,” Am. J. Ophthalmol.148(3), 439–444, 444.e1 (2009). [CrossRef] [PubMed]
  20. S. Schmitz-Valckenberg, M. Fleckenstein, H. M. Helb, P. Charbel Issa, H. P. Scholl, and F. G. Holz, “In vivo imaging of foveal sparing in geographic atrophy secondary to age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci.50(8), 3915–3921 (2009). [CrossRef] [PubMed]
  21. W. R. Green and S. N. Key, “Senile macular degeneration: a histopathologic study,” Trans. Am. Ophthalmol. Soc.75, 180–254 (1977). [PubMed]
  22. R. G. Sayegh, C. Simader, U. Scheschy, A. Montuoro, C. Kiss, S. Sacu, D. P. Kreil, C. Prünte, and U. Schmidt-Erfurth, “A systematic comparison of spectral-domain optical coherence tomography and fundus autofluorescence in patients with geographic atrophy,” Ophthalmology118(9), 1844–1851 (2011). [CrossRef] [PubMed]
  23. S. J. Chiu, J. A. Izatt, R. V. O’Connell, K. P. Winter, C. A. Toth, and S. Farsiu, “Validated automatic segmentation of AMD pathology including drusen and geographic atrophy in SD-OCT images,” Invest. Ophthalmol. Vis. Sci.53(1), 53–61 (2012). [CrossRef] [PubMed]
  24. Z. Yehoshua, C. A. A. Garcia Filho, F. M. Penha, G. Gregori, P. F. Stetson, W. J. Feuer, and P. J. Rosenfeld, “Comparison of geographic atrophy measurements from the OCT fundus image and the sub-RPE slab image,” Ophthalmic Surg Lasers Imaging Retina44(2), 127–132 (2013). [CrossRef] [PubMed]
  25. C. Schütze, C. Ahlers, S. Sacu, G. Mylonas, R. Sayegh, I. Golbaz, G. Matt, G. Stock, and U. Schmidt-Erfurth, “Performance of OCT segmentation procedures to assess morphology and extension in geographic atrophy,” Acta Ophthalmol. (Copenh.)89(3), 235–240 (2011). [CrossRef] [PubMed]
  26. S. J. Chiu, X. T. Li, P. Nicholas, C. A. Toth, J. A. Izatt, and S. Farsiu, “Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation,” Opt. Express18(18), 19413–19428 (2010). [CrossRef] [PubMed]
  27. S. Lu, C. Y. L. Cheung, J. Liu, J. H. Lim, C. K. S. Leung, and T. Y. Wong, “Automated layer segmentation of optical coherence tomography images,” IEEE Trans. Biomed. Eng.57(10), 2605–2608 (2010). [CrossRef] [PubMed]
  28. M. K. Garvin, M. D. Abràmoff, X. Wu, S. R. Russell, T. L. Burns, and M. Sonka, “Automated 3-D intraretinal layer segmentation of macular spectral-domain optical coherence tomography images,” IEEE Trans. Med. Imaging28(9), 1436–1447 (2009). [CrossRef] [PubMed]
  29. Q. Chen, T. Leng, L. L. Zheng, L. Kutzscher, J. Ma, L. de Sisternes, and D. L. Rubin, “Automated drusen segmentation and quantification in SD-OCT images,” Med. Image Anal.17(8), 1058–1072 (2013). [CrossRef] [PubMed]
  30. C. Tomasi and R. Manduchi, “Bilateral filtering for gray and color images,” Proceedings of the International Conference on Computer Vision (ICCV) (1998), pp. 839–846. [CrossRef]
  31. S. Jiao, R. Knighton, X. Huang, G. Gregori, and C. Puliafito, “Simultaneous acquisition of sectional and fundus ophthalmic images with spectral-domain optical coherence tomography,” Opt. Express13(2), 444–452 (2005). [CrossRef] [PubMed]
  32. V. Caselles, F. Catte, T. Coll, and F. Dibos, “A geometric model for active contours in image processing,” Numer. Math.66, 1–31 (1993). [CrossRef]
  33. R. Malladi, J. A. Sethian, and B. C. Vemuri, “Shape modeling with front propagation: a level set approach,” IEEE Trans. Pattern Anal. Mach. Intell.17(2), 158–175 (1995). [CrossRef]
  34. C. Li, C. Xu, C. Gui, and M. D. Fox, “Level set evolution without re-initialization: a new variational formulation,” InProc. of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (2005) 1, pp. 430–436.
  35. N. Otsu, “A threshold selection method from gray-level histograms,” IEEE Trans. Syst. Man Cybern.9(1), 62–66 (1979). [CrossRef]
  36. D. Adalsteinsson and J. A. Sethian, “A fast level set method for propagating interfaces,” J. Comput. Phys.118(2), 269–277 (1995). [CrossRef]
  37. S. Farsiu, S. J. Chiu, R. V. O’Cornell, F. A. Folgar, E. Yuan, J. A. Izatt, and C. A. Toth, “Quantitative classification of Eyes with and without intermediate age-related macular degeneration using optical coherence tomography,” Ophthalmologyin press.
  38. R. P. Nunes, G. Gregori, Z. Yehoshua, P. F. Stetson, W. Feuer, A. A. Moshfeghi, and P. J. Rosenfeld, “Predicting the progression of geographic atrophy in age-related macular degeneration with SD-Oct en face imaging of the outer retina,” Ophthalmic Surg. Lasers Imaging Retina44(4), 344–359 (2013).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited