OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 4, Iss. 12 — Dec. 1, 2013
  • pp: 2945–2961

Comparison of different metrics for analysis and visualization in spectroscopic optical coherence tomography

Volker Jaedicke, Semih Agcaer, Francisco E. Robles, Marian Steinert, David Jones, Sebastian Goebel, Nils C. Gerhardt, Hubert Welp, and Martin R. Hofmann  »View Author Affiliations

Biomedical Optics Express, Vol. 4, Issue 12, pp. 2945-2961 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (14273 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Spectroscopic Optical Coherence Tomography (S-OCT) extracts depth resolved spectra that are inherently available from OCT signals. The back scattered spectra contain useful functional information regarding the sample, since the light is altered by wavelength dependent absorption and scattering caused by chromophores and structures of the sample. Two aspects dominate the performance of S-OCT: (1) the spectral analysis processing method used to obtain the spatially-resolved spectroscopic information and (2) the metrics used to visualize and interpret relevant sample features. In this work, we focus on the second aspect, where we will compare established and novel metrics for S-OCT. These concepts include the adaptation of methods known from multispectral imaging and modern signal processing approaches such as pattern recognition. To compare the performance of the metrics in a quantitative manner, we use phantoms with microsphere scatterers of different sizes that are below the system’s resolution and therefore cannot be differentiated using intensity based OCT images. We show that the analysis of the spectral features can clearly separate areas with different scattering properties in multi-layer phantoms. Finally, we demonstrate the performance of our approach for contrast enhancement in bovine articular cartilage.

© 2013 Optical Society of America

OCIS Codes
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.4500) Medical optics and biotechnology : Optical coherence tomography
(180.0180) Microscopy : Microscopy
(290.5850) Scattering : Scattering, particles
(300.0300) Spectroscopy : Spectroscopy

ToC Category:
Optical Coherence Tomography

Original Manuscript: September 24, 2013
Revised Manuscript: November 8, 2013
Manuscript Accepted: November 10, 2013
Published: November 22, 2013

Volker Jaedicke, Semih Agcaer, Francisco E. Robles, Marian Steinert, David Jones, Sebastian Goebel, Nils C. Gerhardt, Hubert Welp, and Martin R. Hofmann, "Comparison of different metrics for analysis and visualization in spectroscopic optical coherence tomography," Biomed. Opt. Express 4, 2945-2961 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. U. Morgner, W. Drexler, F. X. Kärtner, X. D. Li, C. Pitris, E. P. Ippen, and J. G. Fujimoto, “Spectroscopic optical coherence tomography,” Opt. Lett.25(2), 111–113 (2000). [CrossRef] [PubMed]
  2. F. E. Robles, C. Wilson, G. Grant, and A. Wax, “Molecular imaging true-colour spectroscopic optical coherence tomography,” Nat. Photonics5(12), 744–747 (2011). [CrossRef] [PubMed]
  3. J. Yi, A. J. Radosevich, J. D. Rogers, S. C. P. Norris, İ. R. Çapoğlu, A. Taflove, and V. Backman, “Can OCT be sensitive to nanoscale structural alterations in biological tissue?” Opt. Express21(7), 9043–9059 (2013). [CrossRef] [PubMed]
  4. V. Backman, M. B. Wallace, L. T. Perelman, J. T. Arendt, R. Gurjar, M. G. Müller, Q. Zhang, G. Zonios, E. Kline, J. A. McGilligan, S. Shapshay, T. Valdez, K. Badizadegan, J. M. Crawford, M. Fitzmaurice, S. Kabani, H. S. Levin, M. Seiler, R. R. Dasari, I. Itzkan, J. Van Dam, and M. S. Feld, “Detection of preinvasive cancer cells,” Nature406(6791), 35–36 (2000). [CrossRef] [PubMed]
  5. R. N. Graf, F. E. Robles, X. Chen, and A. Wax, “Detecting precancerous lesions in the hamster cheek pouch using spectroscopic white-light optical coherence tomography to assess nuclear morphology via spectral oscillations,” J. Biomed. Opt.14(6), 064030 (2009). [CrossRef] [PubMed]
  6. M. Tanaka, M. Hirano, T. Hasegawa, and I. Sogawa, “Lipid distribution imaging in in-vitro artery model by 1.7-μm spectroscopic spectral-domain optical coherence tomography,” in Proc. SPIE 8565, Photonic Therapeutics and Diagnostics IX (2013), p. 85654F–85654F–7.
  7. C. P. Fleming, J. Eckert, E. F. Halpern, J. A. Gardecki, and G. J. Tearney, “Depth resolved detection of lipid using spectroscopic optical coherence tomography,” Biomed. Opt. Express4(8), 1269–1284 (2013). [CrossRef] [PubMed]
  8. C. Xu, J. Ye, D. L. Marks, and S. A. Boppart, “Near-infrared dyes as contrast-enhancing agents for spectroscopic optical coherence tomography,” Opt. Lett.29(14), 1647–1649 (2004). [CrossRef] [PubMed]
  9. A. L. Oldenburg, M. N. Hansen, T. S. Ralston, A. Wei, and S. A. Boppart, “Imaging gold nanorods in excised human breast carcinoma by spectroscopic optical coherence tomography,” J. Mater. Chem.19(35), 6407–6411 (2009). [CrossRef] [PubMed]
  10. T. M. Lee, A. L. Oldenburg, S. Sitafalwalla, D. L. Marks, W. Luo, F. J.-J. Toublan, K. S. Suslick, and S. A. Boppart, “Engineered microsphere contrast agents for optical coherence tomography,” Opt. Lett.28(17), 1546–1548 (2003). [CrossRef] [PubMed]
  11. D. Sacchet, J. Moreau, P. Georges, and A. Dubois, “Simultaneous dual-band ultra-high resolution full-field optical coherence tomography,” Opt. Express16(24), 19434–19446 (2008). [CrossRef] [PubMed]
  12. F. Spöler, S. Kray, P. Grychtol, B. Hermes, J. Bornemann, M. Först, and H. Kurz, “Simultaneous dual-band ultra-high resolution optical coherence tomography,” Opt. Express15(17), 10832–10841 (2007). [CrossRef] [PubMed]
  13. P. Cimalla, J. Walther, M. Mehner, M. Cuevas, and E. Koch, “Simultaneous dual-band optical coherence tomography in the spectral domain for high resolution in vivo imaging,” Opt. Express17(22), 19486–19500 (2009). [CrossRef] [PubMed]
  14. T. Storen, A. Royset, L. O. Svaasand, and T. Lindmo, “Measurement of dye diffusion in scattering tissue phantoms using dual-wavelength low-coherence interferometry,” J. Biomed. Opt.11(1), 014017 (2006). [CrossRef] [PubMed]
  15. C. Xu, F. Kamalabadi, and S. A. Boppart, “Comparative performance analysis of time-frequency distributions for spectroscopic optical coherence tomography,” Appl. Opt.44(10), 1813–1822 (2005). [CrossRef] [PubMed]
  16. R. N. Graf and A. Wax, “Temporal coherence and time-frequency distributions in spectroscopic optical coherence tomography,” J. Opt. Soc. Am. A24(8), 2186–2195 (2007). [CrossRef] [PubMed]
  17. A. Kartakoullis, E. Bousi, and C. Pitris, “Scatterer size-based analysis of optical coherence tomography images using spectral estimation techniques,” Opt. Express18(9), 9181–9191 (2010). [CrossRef] [PubMed]
  18. R. Leitgeb, M. Wojtkowski, A. Kowalczyk, C. K. Hitzenberger, M. Sticker, and A. F. Fercher, “Spectral measurement of absorption by spectroscopic frequency-domain optical coherence tomography,” Opt. Lett.25(11), 820–822 (2000). [CrossRef] [PubMed]
  19. D. C. Adler, T. H. Ko, P. Herz, and J. G. Fujimoto, “Optical coherence tomography contrast enhancement using spectroscopic analysis with spectral autocorrelation,” Opt. Express12(22), 5487–5501 (2004). [CrossRef] [PubMed]
  20. C. Kasseck, V. Jaedicke, N. C. Gerhardt, H. Welp, and M. R. Hofmann, “Substance identification by depth resolved spectroscopic pattern reconstruction in frequency domain optical coherence tomography,” Opt. Commun.283(23), 4816–4822 (2010). [CrossRef]
  21. Z. Hu and A. M. Rollins, “Optical Design for OCT,” in Optical Coherence Tomography - Technology and Applications (2008), pp. 379–404.
  22. R. A. Leitgeb, W. Drexler, B. Povazay, B. Hermann, H. Sattmann, and A. F. Fercher, “Spectroscopic Fourier domain optical coherence tomography: principle, limitations, and applications,” Proc. SPIE5690, 151–158 (2005). [CrossRef]
  23. B. Hermann, B. Hofer, C. Meier, and W. Drexler, “Spectroscopic measurements with dispersion encoded full range frequency domain optical coherence tomography in single- and multilayered non-scattering phantoms,” Opt. Express17(26), 24162–24174 (2009). [CrossRef] [PubMed]
  24. F. E. Robles and A. Wax, “Separating the scattering and absorption coefficients using the real and imaginary parts of the refractive index with low-coherence interferometry,” Opt. Lett.35(17), 2843–2845 (2010). [CrossRef] [PubMed]
  25. C. Xu, D. L. Marks, M. Do, and S. Boppart, “Separation of absorption and scattering profiles in spectroscopic optical coherence tomography using a least-squares algorithm,” Opt. Express12(20), 4790–4803 (2004). [CrossRef] [PubMed]
  26. D. J. Faber and T. G. van Leeuwen, “Are quantitative attenuation measurements of blood by optical coherence tomography feasible?” Opt. Lett.34(9), 1435–1437 (2009). [CrossRef] [PubMed]
  27. B. Hermann, K. Bizheva, A. Unterhuber, B. Považay, H. Sattmann, L. Schmetterer, A. F. Fercher, and W. Drexler, “Precision of extracting absorption profiles from weakly scattering media with spectroscopic time-domain optical coherence tomography,” Opt. Express12(8), 1677–1688 (2004). [CrossRef] [PubMed]
  28. J. Yi and V. Backman, “Imaging a full set of optical scattering properties of biological tissue by inverse spectroscopic optical coherence tomography,” Opt. Lett.37(21), 4443–4445 (2012). [CrossRef] [PubMed]
  29. C. Xu, C. Vinegoni, T. S. Ralston, W. Luo, W. Tan, and S. A. Boppart, “Spectroscopic spectral-domain optical coherence microscopy,” Opt. Lett.31(8), 1079–1081 (2006). [CrossRef] [PubMed]
  30. N. Jacobson and M. Gupta, “Design goals and solutions for display of hyperspectral images,” IEEE Trans. Geosci. Rem. Sens.43(11), 2684–2692 (2005). [CrossRef]
  31. J. S. Tyo, A. Konsolakis, D. I. Diersen, and R. C. Olsen, “Principal-components-based display strategy for spectral imagery,” IEEE Trans. Geosci. Rem. Sens.41(3), 708–718 (2003). [CrossRef]
  32. F. E. Robles and A. Wax, “Measuring morphological features using light-scattering spectroscopy and Fourier-domain low-coherence interferometry,” Opt. Lett.35(3), 360–362 (2010). [CrossRef] [PubMed]
  33. J. Yi, J. Gong, and X. Li, “Analyzing absorption and scattering spectra of micro-scale structures with spectroscopic optical coherence tomography,” Opt. Express17(15), 13157–13167 (2009). [CrossRef] [PubMed]
  34. F. E. Robles, R. N. Graf, and A. Wax, “Dual window method for processing spectroscopic optical coherence tomography signals with simultaneously high spectral and temporal resolution,” Opt. Express17(8), 6799–6812 (2009). [CrossRef] [PubMed]
  35. B. C. Tay, T. H. Chow, B. K. Ng, and T. K. Loh, “Dual-window dual-bandwidth spectroscopic optical coherence tomography metric for qualitative scatterer size differentiation in tissues,” IEEE Trans. Biomed. Eng.59(9), 2439–2448 (2012). [CrossRef] [PubMed]
  36. H. W. Siesler, Y. Ozaki, S. Kawata, and H. M. Heise, Near Infrared Spectroscopy (WILEY-VCH Verlag GmbH, 2005).
  37. M. A. Digman, V. R. Caiolfa, M. Zamai, and E. Gratton, “The phasor approach to fluorescence lifetime imaging analysis,” Biophys. J.94(2), L14–L16 (2008). [CrossRef] [PubMed]
  38. F. Fereidouni, A. N. Bader, and H. C. Gerritsen, “Spectral phasor analysis allows rapid and reliable unmixing of fluorescence microscopy spectral images,” Opt. Express20(12), 12729–12741 (2012). [CrossRef] [PubMed]
  39. C. M. Bishop and N. M. Nasrabadi, Pattern Recognition and Machine Learning (Springer New York, 2006).
  40. J. Sammon, “A nonlinear mapping for data structure analysis,” IEEE Trans. Comput.C-18(5), 401–409 (1969). [CrossRef]
  41. T. Kohonen, “The self organizing map,” Proc. IEEE78(9), 1464–1480 (1990). [CrossRef]
  42. M. Groß and F. Seibert, “Visualization of multidimensional image data sets using a neural network,” Vis. Comput.10(3), 145–159 (1993). [CrossRef]
  43. R. Kohavi, “A study of cross-validation and bootstrap for accuracy estimation and model selection,” Int. Jt. Conf. Artifical Intell.14, 1137–1145 (1995).
  44. V. Jaedicke, S. Ağcaer, S. Goebel, N. C. Gerhardt, H. Welp, and M. R. Hofmann, “Spectroscopic optical coherence tomography with graphics processing unit based analysis of three dimensional data sets,” in Proc. SPIE 8592, Biomedical Applications of Light Scattering VII, Adam P. Wax; Vadim Backman, ed. (2013), 859215.
  45. P. Cernohorsky, D. M. de Bruin, M. van Herk, J. Bras, D. J. Faber, S. D. Strackee, and T. G. van Leeuwen, “In-situ imaging of articular cartilage of the first carpometacarpal joint using co-registered optical coherence tomography and computed tomography,” J. Biomed. Opt.17(6), 060501 (2012). [CrossRef] [PubMed]
  46. X. Li, S. Martin, C. Pitris, R. Ghanta, D. L. Stamper, M. Harman, J. G. Fujimoto, and M. E. Brezinski, “High-resolution optical coherence tomographic imaging of osteoarthritic cartilage during open knee surgery,” Arthritis Res. Ther.7(2), R318–R323 (2005). [CrossRef] [PubMed]
  47. A. K. Jeffery, G. W. Blunn, C. W. Archer, and G. Bentley, “Three-dimensional collagen architecture in bovine articular cartilage,” J. Bone Joint Surg. Br.73(5), 795–801 (1991). [PubMed]
  48. L. Zhang, J. Hu, and K. A. Athanasiou, “The role of tissue engineering in articular cartilage repair and regeneration,” Crit. Rev. Biomed. Eng.37(1-2), 1–57 (2009). [CrossRef] [PubMed]
  49. D. K. Kasaragod, Z. Lu, J. Jacobs, and S. J. Matcher, “Experimental validation of an extended Jones matrix calculus model to study the 3D structural orientation of the collagen fibers in articular cartilage using polarization-sensitive optical coherence tomography,” Biomed. Opt. Express3(3), 378–387 (2012). [CrossRef] [PubMed]
  50. L. Zhang, J. Hu, and K. A. Athanasiou, “The role of Tissue Engineering in Articular Cartilage Repair and Regeneration,” Crit. Rev. Biomed. Eng.37(1-2), 1–57 (2009). [CrossRef] [PubMed]
  51. X. Xu, R. Wang, and J. B. Elder, “Optical clearing effect on gastric tissues immersed with biocompatible chemical agents investigated by near infrared reflectance spectroscopy,” J. Phys. D Appl. Phys.36(14), 1707–1713 (2003). [CrossRef]
  52. M. Hoffmann, M. Lange, F. Meuche, T. Reuter, H. Plettenberg, G. Spahn, and I. Ponomarev, “Comparison of Optical and Biomechanical Properties of Native and Artificial Equine Joint Cartilage under Load using NIR Spectroscopy,” Biomed. Tech. (Berl.)57, 1059–1061 (2012). [PubMed]
  53. A. Wax, C. Yang, and J. A. Izatt, “Fourier-domain low-coherence interferometry for light-scattering spectroscopy,” Opt. Lett.28(14), 1230–1232 (2003). [CrossRef] [PubMed]
  54. R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification (John Wiley & Sons, 2012).
  55. F. E. Robles, J. W. Wilson, M. C. Fischer, and W. S. Warren, “Phasor analysis for nonlinear pump-probe microscopy,” Opt. Express20(15), 17082–17092 (2012). [CrossRef]
  56. T. Jee, H. Lee, and Y. Lee,G. Tummarello, P. Bouquet, and O. Signore, eds., “Shrinking Number of Clusters by Multi-Dimensional Scaling.,” in SWAP 2006 - Semantic Web Applications and Perspectives, Proceedings of the 3rd Italian Semantic Web Workshop, G. Tummarello, P. Bouquet, and O. Signore, eds. (CEUR-WS.org, 2006).
  57. C. Cortes and V. Vapnik, “Support-vector networks,” Mach. Learn.20(3), 273–297 (1995). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited