OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 4, Iss. 2 — Feb. 1, 2013
  • pp: 206–218

Variance of time-of-flight distribution is sensitive to cerebral blood flow as demonstrated by ICG bolus-tracking measurements in adult pigs

Jonathan T. Elliott, Daniel Milej, Anna Gerega, Wojciech Weigl, Mamadou Diop, Laura B. Morrison, Ting-Yim Lee, Adam Liebert, and Keith St. Lawrence  »View Author Affiliations


Biomedical Optics Express, Vol. 4, Issue 2, pp. 206-218 (2013)
http://dx.doi.org/10.1364/BOE.4.000206


View Full Text Article

Enhanced HTML    Acrobat PDF (1880 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Variance of time-of-flight distributions have been shown to be more sensitive to cerebral blood flow (CBF) during dynamic-contrast enhanced monitoring of neurotrauma patients than attenuation. What is unknown is the degree to which variance is affected by changes in extracerebral blood flow. Furthermore, the importance of acquiring the arterial input function (AIF) on quantitative analysis of the data is not yet clear. This animal study confirms that variance is both sensitive and specific to changes occurring in the brain when measurements are acquired on the surface of the scalp. Furthermore, when the variance data along with the measured AIF is analyzed using a nonparametric deconvolution method, the recovered change in CBF is in good agreement with CT perfusion values.

© 2013 OSA

OCIS Codes
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.6920) Medical optics and biotechnology : Time-resolved imaging

ToC Category:
Optics of Tissue and Turbid Media

History
Original Manuscript: September 4, 2012
Revised Manuscript: October 22, 2012
Manuscript Accepted: November 20, 2012
Published: January 2, 2013

Citation
Jonathan T. Elliott, Daniel Milej, Anna Gerega, Wojciech Weigl, Mamadou Diop, Laura B. Morrison, Ting-Yim Lee, Adam Liebert, and Keith St. Lawrence, "Variance of time-of-flight distribution is sensitive to cerebral blood flow as demonstrated by ICG bolus-tracking measurements in adult pigs," Biomed. Opt. Express 4, 206-218 (2013)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-4-2-206


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. T. Elliott, M. Diop, K. M. Tichauer, T.-Y. Lee, and K. St. Lawrence, “Quantitative measurement of cerebral blood flow in a juvenile porcine model by depth-resolved near-infrared spectroscopy,” J. Biomed. Opt.15(3), 037014 (2010). [CrossRef] [PubMed]
  2. S. Fantini, D. Hueber, M. A. Franceschini, E. Gratton, W. Rosenfeld, P. G. Stubblefield, D. Maulik, and M. R. Stankovic, “Non-invasive optical monitoring of the newborn piglet brain using continuous-wave and frequency-domain spectroscopy,” Phys. Med. Biol.44(6), 1543–1563 (1999). [CrossRef] [PubMed]
  3. A. Liebert, H. Wabnitz, J. Steinbrink, H. Obrig, M. Möller, R. Macdonald, A. Villringer, and H. Rinneberg, “Time-resolved multidistance near-infrared spectroscopy of the adult head: intracerebral and extracerebral absorption changes from moments of distribution of times of flight of photons,” Appl. Opt.43(15), 3037–3047 (2004). [CrossRef] [PubMed]
  4. United States Food and Drug Administration, “Approved Drug Products with Therapeutic Equivalence Evaluations” (Silver Spring, MD, 2012).
  5. M. L. Landsman, G. Kwant, G. A. Mook, and W. G. Zijlstra, “Light-absorbing properties, stability, and spectral stabilization of indocyanine green,” J. Appl. Physiol.40(4), 575–583 (1976). [PubMed]
  6. F. Gora, S. Shinde, C. E. Elwell, J. C. Goldstone, M. Cope, D. T. Delpy, and M. Smith, “Noninvasive measurement of cerebral blood flow in adults using near-infrared spectroscopy and indocyanine green: a pilot study,” J. Neurosurg. Anesthesiol.14(3), 218–222 (2002). [CrossRef] [PubMed]
  7. A. Jelzow, H. Wabnitz, H. Obrig, R. Macdonald, and J. Steinbrink, “Separation of indocyanine green boluses in the human brain and scalp based on time-resolved in-vivo fluorescence measurements,” J. Biomed. Opt.17(5), 057003 (2012). [CrossRef] [PubMed]
  8. O. Steinkellner, C. Gruber, H. Wabnitz, A. Jelzow, J. Steinbrink, J. B. Fiebach, R. Macdonald, and H. Obrig, “Optical bedside monitoring of cerebral perfusion: technological and methodological advances applied in a study on acute ischemic stroke,” J. Biomed. Opt.15(6), 061708 (2010). [CrossRef] [PubMed]
  9. A. Liebert, H. Wabnitz, J. Steinbrink, M. Möller, R. Macdonald, H. Rinneberg, A. Villringer, and H. Obrig, “Bed-side assessment of cerebral perfusion in stroke patients based on optical monitoring of a dye bolus by time-resolved diffuse reflectance,” Neuroimage24(2), 426–435 (2005). [CrossRef] [PubMed]
  10. A. Liebert, D. Milej, W. Wojciech, A. Gerega, M. Kacprzak, E. Mayzner-Zawadzka, and R. Maniewski, “Assessment of brain perfusion disorders by ICG bolus tracking with time-resolved fluorescence monitoring,” in Biomedical Optics, OSA Technical Digest (Optical Society of America, 2012), paper. BTu3A.20.
  11. W. M. Kuebler, A. Sckell, O. Habler, M. Kleen, G. E. Kuhnle, M. Welte, K. Messmer, and A. E. Goetz, “Noninvasive measurement of regional cerebral blood flow by near-infrared spectroscopy and indocyanine green,” J. Cereb. Blood Flow Metab.18(4), 445–456 (1998). [CrossRef] [PubMed]
  12. C. Terborg, T. Birkner, B. Schack, C. Weiller, and J. Röther, “Noninvasive monitoring of cerebral oxygenation during vasomotor reactivity tests by a new near-infrared spectroscopy device,” Cerebrovasc. Dis.16(1), 36–41 (2003). [CrossRef] [PubMed]
  13. A. Cenic, D. G. Nabavi, R. A. Craen, A. W. Gelb, and T. Y. Lee, “Dynamic CT measurement of cerebral blood flow: a validation study,” AJNR Am. J. Neuroradiol.20(1), 63–73 (1999). [PubMed]
  14. D. W. Brown, P. A. Picot, J. G. Naeini, R. Springett, D. T. Delpy, and T. Y. Lee, “Quantitative near infrared spectroscopy measurement of cerebral hemodynamics in newborn piglets,” Pediatr. Res.51(5), 564–570 (2002). [CrossRef] [PubMed]
  15. J. T. Elliott, M. Diop, T. Y. Lee, and K. St. Lawrence, “Model-independent dynamic constraint to improve the optical reconstruction of regional kinetic parameters,” Opt. Lett.37(13), 2571–2573 (2012). [CrossRef] [PubMed]
  16. G. Zaccanti, D. Contini, M. Gurioli, A. Ismaelli, H. Liszka, and A. Sassaroli, “Detectability of inhomogeneities within highly diffusing media,” Proc. SPIE2389, 755–762 (1995). [CrossRef]
  17. J. Steinbrink, H. Wabnitz, H. Obrig, A. Villringer, and H. Rinneberg, “Determining changes in NIR absorption using a layered model of the human head,” Phys. Med. Biol.46(3), 879–896 (2001). [CrossRef] [PubMed]
  18. M. Diop and K. St. Lawrence, “Deconvolution method for recovering the photon time-of-flight distribution from time-resolved measurements,” Opt. Lett.37(12), 2358–2360 (2012). [CrossRef] [PubMed]
  19. M. Kacprzak, A. Liebert, P. Sawosz, N. Zolek, and R. Maniewski, “Time-resolved optical imager for assessment of cerebral oxygenation,” J. Biomed. Opt.12(3), 034019 (2007). [CrossRef] [PubMed]
  20. A. Liebert, H. Wabnitz, D. Grosenick, M. Möller, R. Macdonald, and H. Rinneberg, “Evaluation of optical properties of highly scattering media by moments of distributions of times of flight of photons,” Appl. Opt.42(28), 5785–5792 (2003). [CrossRef] [PubMed]
  21. P. Meier and K. L. Zierler, “On the theory of the indicator-dilution method for measurement of blood flow and volume,” J. Appl. Physiol.6(12), 731–744 (1954). [PubMed]
  22. J. T. Elliott, M. Diop, K. M. Tichauer, T.-Y. Lee, and K. St. Lawrence, “Monte Carlo based modeling of indocyanine green bolus tracking in the adult human head,” Proc. SPIE7896, 78960E, 78960E-13 (2011). [CrossRef]
  23. E. T. Jaynes, Probability Theory: The Logic of Science (Cambridge University Press, 2003).
  24. H. K. Thompson, C. F. Starmer, R. E. Whalen, and H. D. McIntosh, “Indicator transit time considered as a gamma variate,” Circ. Res.14(6), 502–515 (1964). [CrossRef] [PubMed]
  25. M. Diop, K. M. Tichauer, J. T. Elliott, M. Migueis, T.-Y. Lee, and K. St. Lawrence, “Comparison of time-resolved and continuous-wave near-infrared techniques for measuring cerebral blood flow in piglets,” J. Biomed. Opt.15(5), 057004 (2010). [CrossRef] [PubMed]
  26. R. L. Grubb, M. E. Raichle, J. O. Eichling, and M. M. Ter-Pogossian, “The effects of changes in PaCO2 on cerebral blood volume, blood flow, and vascular mean transit time,” Stroke5(5), 630–639 (1974). [CrossRef] [PubMed]
  27. R. L. Grubb, M. E. Raichle, J. O. Eichling, and M. H. Gado, “Effects of subarachnoid hemorrhage on cerebral blood volume, blood flow, and oxygen utilization in humans,” J. Neurosurg.46(4), 446–453 (1977). [CrossRef] [PubMed]
  28. M. Diop, K. M. Tichauer, J. T. Elliott, M. Migueis, T.-Y. Lee, and K. St. Lawrence, “Time-resolved near-infrared technique for bedside monitoring of absolute cerebral blood flow,” Proc. SPIE7555, 75550Z, 75550Z-9 (2010). [CrossRef]
  29. A. Liebert, H. Wabnitz, H. Obrig, R. Erdmann, M. Möller, R. Macdonald, H. Rinneberg, A. Villringer, and J. Steinbrink, “Non-invasive detection of fluorescence from exogenous chromophores in the adult human brain,” Neuroimage31(2), 600–608 (2006). [CrossRef] [PubMed]
  30. L. Friberg, J. Kastrup, M. Hansen, and J. Bülow, “Cerebral effects of scalp cooling and extracerebral contribution to calculated blood flow values using the intravenous 133Xe technique,” Scand. J. Clin. Lab. Invest.46(4), 375–379 (1986). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited