OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 4, Iss. 2 — Feb. 1, 2013
  • pp: 220–229

Optical side-effects of fs-laser treatment in refractive surgery investigated by means of a model eye

Roland Ackermann, Robert Kammel, Marina Merker, Andreas Kamm, Andreas Tünnermann, and Stefan Nolte  »View Author Affiliations

Biomedical Optics Express, Vol. 4, Issue 2, pp. 220-229 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (4539 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Optical side-effects of fs-laser treatment in refractive surgery are investigated by means of a model eye. We show that rainbow glare is the predominant perturbation, which can be avoided by randomly distributing laser spots within the lens. For corneal applications such as fs-LASIK, even a regular grid with spot-to-spot distances of ~3 µm is sufficient to minimize rainbow glare perception. Contrast sensitivity is affected, when the lens is treated with large 3D-patterns.

© 2013 OSA

OCIS Codes
(320.2250) Ultrafast optics : Femtosecond phenomena
(330.1720) Vision, color, and visual optics : Color vision
(330.4460) Vision, color, and visual optics : Ophthalmic optics and devices
(330.7335) Vision, color, and visual optics : Visual optics, refractive surgery

ToC Category:
Ophthalmology Applications

Original Manuscript: October 10, 2012
Revised Manuscript: November 29, 2012
Manuscript Accepted: November 30, 2012
Published: January 10, 2013

Roland Ackermann, Robert Kammel, Marina Merker, Andreas Kamm, Andreas Tünnermann, and Stefan Nolte, "Optical side-effects of fs-laser treatment in refractive surgery investigated by means of a model eye," Biomed. Opt. Express 4, 220-229 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Nolte, “Micromachining,” in Ultrafast Lasers: Technology and Applications, M. E. Fermann, A. Galvanauskas, and G. Sucha, eds. (Marcel Dekker, New York, 2002).
  2. K. Stonecipher, T. S. Ignacio, and M. Stonecipher, “Advances in refractive surgery: microkeratome and femtosecond laser flap creation in relation to safety, efficacy, predictability, and biomechanical stability,” Curr. Opin. Ophthalmol.17(4), 368–372 (2006). [CrossRef] [PubMed]
  3. T. Ripken, U. Oberheide, C. Ziltz, W. Ertmer, G. Gerten, and H. Lubatschowski, “Fs-laser induced elasticity changes to improve presbyopic lens accommodation,” Proc. SPIE5688, 278–287 (2005). [CrossRef]
  4. Z. Nagy, A. Takacs, T. Filkorn, and M. Sarayba, “Initial clinical evaluation of an intraocular femtosecond laser in cataract surgery,” J. Refract. Surg.25(12), 1053–1060 (2009). [CrossRef] [PubMed]
  5. S. Toropygin, M. Krause, I. Riemann, M. Hild, P. Mestres, B. Seitz, E. Khurieva, K. W. Ruprecht, U. Löw, Z. Gatzioufas, and K. König, “In vitro noncontact intravascular femtosecond laser surgery in models of branch retinal vein occlusion,” Curr. Eye Res.33(3), 277–283 (2008). [CrossRef] [PubMed]
  6. L. Ding, W. H. Knox, J. Bühren, L. J. Nagy, and K. R. Huxlin, “Intratissue refractive index shaping (IRIS) of the cornea and lens using a low-pulse-energy femtosecond laser oscillator,” Invest. Ophthalmol. Vis. Sci.49(12), 5332–5339 (2008). [CrossRef] [PubMed]
  7. L. J. Nagy, L. Ding, L. Xu, W. H. Knox, and K. R. Huxlin, “Potentiation of femtosecond laser intratissue refractive index shaping (IRIS) in the living cornea with sodium fluorescein,” Invest. Ophthalmol. Vis. Sci.51(2), 850–856 (2010). [CrossRef] [PubMed]
  8. L. Xu, W. H. Knox, M. DeMagistris, N. Wang, and K. R. Huxlin, “Noninvasive intratissue refractive index shaping (IRIS) of the cornea with blue femtosecond laser light,” Invest. Ophthalmol. Vis. Sci.52(11), 8148–8155 (2011). [CrossRef] [PubMed]
  9. A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B81(8), 1015–1047 (2005). [CrossRef]
  10. T. Juhasz, G. A. Kastis, C. Suárez, Z. Bor, and W. E. Bron, “Time-resolved observations of shock waves and cavitation bubbles generated by femtosecond laser pulses in corneal tissue and water,” Lasers Surg. Med.19(1), 23–31 (1996). [CrossRef] [PubMed]
  11. R. R. Krueger, I. L. Thornton, M. Xu, Z. Bor, and T. J. van den Berg, “Rainbow glare as an optical side effect of IntraLASIK,” Ophthalmology115(7), 1187–1195.e1 (2008). [CrossRef] [PubMed]
  12. S. Bamba, K. M. Rocha, J. C. Ramos-Esteban, and R. R. Krueger, “Incidence of rainbow glare after laser in situ keratomileusis flap creation with a 60 kHz femtosecond laser,” J. Cataract Refract. Surg.35(6), 1082–1086 (2009). [CrossRef] [PubMed]
  13. M. Peter, R. Kammel, R. Ackermann, S. Schramm, B. U. Seifert, K. Frey, M. Blum, S. Nolte, and K. S. Kunert, “Analysis of optical side-effects of fs-laser therapy in human presbyopic lens simulated with modified contact lenses,” Graefes Arch. Clin. Exp. Ophthalmol.250(12), 1813–1825 (2012). [CrossRef] [PubMed]
  14. S. Norrby, P. Piers, C. Campbell, and M. van der Mooren, “Model eyes for evaluation of intraocular lenses,” Appl. Opt.46(26), 6595–6605 (2007). [CrossRef] [PubMed]
  15. W. J. Benjamin and Q. A. Cappelli, “Oxygen permeability (Dk) of thirty-seven rigid contact lens materials,” Optom. Vis. Sci.79(2), 103–111 (2002). [CrossRef] [PubMed]
  16. M. Sachsenweger, Augenheilkunde, Duale Reihe (Georg Thieme Verlag, 2002), Vol. 2.
  17. E. A. Hermans, M. Dubbelman, R. Van der Heijde, and R. M. Heethaar, “Equivalent refractive index of the human lens upon accommodative response,” Optom. Vis. Sci.85(12), 1179–1184 (2008). [CrossRef] [PubMed]
  18. R. C. Bakaraju, K. Ehrmann, D. Falk, A. Ho, and E. Papas, “Physical human model eye and methods of its use to analyse optical performance of soft contact lenses,” Opt. Express18(16), 16868–16882 (2010). [CrossRef] [PubMed]
  19. H. Wässle and B. B. Boycott, “Functional architecture of the mammalian retina,” Physiol. Rev.71(2), 447–480 (1991). [PubMed]
  20. S. L. Polyak, The Retina (University of Chicago Press, Chicago, 1941).
  21. A. Gullstrand, “Zusätze von A. Gullstrand,” in Handbuch der physiologischen Optik von H. von Helmholtz, A. Gullstrand, J. von Kries, and W. Nagel, eds. (Verlag von Leopold Voss, Hamburg und Leipzig, 1909).
  22. J. Németh, O. Fekete, and N. Pesztenlehrer, “Optical and ultrasound measurement of axial length and anterior chamber depth for intraocular lens power calculation,” J. Cataract Refract. Surg.29(1), 85–88 (2003). [CrossRef] [PubMed]
  23. L. Wang, M. Shirayama, X. J. Ma, T. Kohnen, and D. D. Koch, “Optimizing intraocular lens power calculations in eyes with axial lengths above 25.0 mm,” J. Cataract Refract. Surg.37(11), 2018–2027 (2011). [CrossRef] [PubMed]
  24. T. Grosvenor and R. Scott, “Role of the axial length/corneal radius ratio in determining the refractive state of the eye,” Optom. Vis. Sci.71(9), 573–579 (1994). [CrossRef] [PubMed]
  25. C. Hönninger, M. Plötner, B. Ortaç, R. Ackermann, R. Kammel, J. Limpert, S. Nolte, and A. Tünnermann, “Femtosecond fiber laser system for medical applications,” Proc. SPIE7203, 72030W, 72030W-6 (2009). [CrossRef]
  26. H. Uozato and D. L. Guyton, “Centering corneal surgical procedures,” Am. J. Ophthalmol.103(3 Pt 1), 264–275 (1987). [PubMed]
  27. M. Hammer, D. Schweitzer, W. Ziegler, M. Wiechmann, and J. Strobel, “Intrastromale refraktive Chirurgie mit ultrakurzen Laserpulsen Ergebnisse erster In-vitro-Experimente [Intrastomal refractive surgery with ultra-short laser pulses. Results from initial in vitro experiments],” Ophthalmologe99(10), 756–760 (2002). [CrossRef] [PubMed]
  28. J. Y. Kim, M. J. Kim, T. I. Kim, H. J. Choi, J. H. Pak, and H. Tchah, “A femtosecond laser creates a stronger flap than a mechanical microkeratome,” Invest. Ophthalmol. Vis. Sci.47(2), 599–604 (2006). [CrossRef] [PubMed]
  29. A. Vestergaard, A. Ivarsen, S. Asp, and J. O. Hjortdal, “Femtosecond (FS) laser vision correction procedure for moderate to high myopia: a prospective study of ReLEx® flex and comparison with a retrospective study of FS-laser in situ keratomileusis,” Acta Ophthalmol. (Copenh.) (2012), http://onlinelibrary.wiley.com/doi/10.1111/j.1755-3768.2012.02406.x/abstract;jsessionid=709547A0B32B5AF6026818404FFA2F39.d03t01 .
  30. H. Lubatschowski, S. Schumacher, M. Fromm, A. Wegener, H. Hoffmann, U. Oberheide, and G. Gerten, “Femtosecond lentotomy: generating gliding planes inside the crystalline lens to regain accommodation ability,” J Biophotonics3(5-6), 265–268 (2010). [CrossRef] [PubMed]
  31. A. J. Augustin, Augenheilkunde (Springer-Verlag, Heidelberg, 2007).
  32. S. Schumacher, M. Fromm, U. Oberheide, P. Bock, I. Imbschweiler, H. Hoffmann, A. Beineke, G. Gerten, A. Wegener, and H. Lubatschowski, “Femtosecond-lentotomy treatment: six-month follow-up of in vivo treated rabbit lenses,” Proc. SPIE7373, 73730H, 73730H-8 (2009). [CrossRef]
  33. R. Ackermann, K. S. Kunert, R. Kammel, S. Bischoff, S. C. Bühren, H. Schubert, M. Blum, and S. Nolte, “Femtosecond laser treatment of the crystalline lens: a 1-year study of possible cataractogenesis in minipigs,” Graefes Arch. Clin. Exp. Ophthalmol.249(10), 1567–1573 (2011). [CrossRef] [PubMed]
  34. M. P. Poudel, “Study of self-focusing effect induced by femtosecond photodisruption on model substances,” Opt. Lett.34(3), 337–339 (2009). [CrossRef] [PubMed]
  35. D. Giguère, G. Olivié, F. Vidal, S. Toetsch, G. Girard, T. Ozaki, J. C. Kieffer, O. Nada, and I. Brunette, “Laser ablation threshold dependence on pulse duration for fused silica and corneal tissues: experiments and modeling,” J. Opt. Soc. Am. A24(6), 1562–1568 (2007). [CrossRef] [PubMed]
  36. M. Miclea, U. Skrzypczak, S. Faust, F. Fankhauser, H. Graener, and G. Seifert, “Nonlinear refractive index of porcine cornea studied by z-scan and self-focusing during femtosecond laser processing,” Opt. Express18(4), 3700–3707 (2010). [CrossRef] [PubMed]
  37. B. Vasudevan, T. L. Simpson, and J. G. Sivak, “Regional variation in the refractive-index of the bovine and human cornea,” Optom. Vis. Sci.85(10), 977–981 (2008). [CrossRef] [PubMed]
  38. V. Nuzzo, M. Savoldelli, J. M. Legeais, and K. Plamann, “Self-focusing and spherical aberrations in corneal tissue during photodisruption by femtosecond laser,” J. Biomed. Opt.15(3), 038003 (2010). [CrossRef] [PubMed]
  39. A. K. Riau, R. I. Angunawela, S. S. Chaurasia, D. T. Tan, and J. S. Mehta, “Effect of different femtosecond laser-firing patterns on collagen disruption during refractive lenticule extraction,” J. Cataract Refract. Surg.38(8), 1467–1475 (2012). [CrossRef] [PubMed]
  40. A. K. Dexl, O. Seyeddain, W. Riha, M. Hohensinn, T. Rückl, V. Reischl, and G. Grabner, “One-year visual outcomes and patient satisfaction after surgical correction of presbyopia with an intracorneal inlay of a new design,” J. Cataract Refract. Surg.38(2), 262–269 (2012). [CrossRef] [PubMed]
  41. S. Schumacher, U. Oberheide, M. Fromm, T. Ripken, W. Ertmer, G. Gerten, A. Wegener, and H. Lubatschowski, “Femtosecond laser induced flexibility change of human donor lenses,” Vision Res.49(14), 1853–1859 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited