OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 4, Iss. 2 — Feb. 1, 2013
  • pp: 307–321

In vivo imaging of cerebral energy metabolism with two-photon fluorescence lifetime microscopy of NADH

Mohammad A. Yaseen, Sava Sakadžić, Weicheng Wu, Wolfgang Becker, Karl A. Kasischke, and David A. Boas  »View Author Affiliations

Biomedical Optics Express, Vol. 4, Issue 2, pp. 307-321 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2554 KB) | SpotlightSpotlight on Optics

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Minimally invasive, specific measurement of cellular energy metabolism is crucial for understanding cerebral pathophysiology. Here, we present high-resolution, in vivo observations of autofluorescence lifetime as a biomarker of cerebral energy metabolism in exposed rat cortices. We describe a customized two-photon imaging system with time correlated single photon counting detection and specialized software for modeling multiple-component fits of fluorescence decay and monitoring their transient behaviors. In vivo cerebral NADH fluorescence suggests the presence of four distinct components, which respond differently to brief periods of anoxia and likely indicate different enzymatic formulations. Individual components show potential as indicators of specific molecular pathways involved in oxidative metabolism.

© 2013 OSA

OCIS Codes
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology
(170.3650) Medical optics and biotechnology : Lifetime-based sensing
(180.4315) Microscopy : Nonlinear microscopy

ToC Category:
Functional Imaging

Original Manuscript: November 6, 2012
Revised Manuscript: January 17, 2013
Manuscript Accepted: January 17, 2013
Published: January 22, 2013

Virtual Issues
March 13, 2013 Spotlight on Optics

Mohammad A. Yaseen, Sava Sakadžić, Weicheng Wu, Wolfgang Becker, Karl A. Kasischke, and David A. Boas, "In vivo imaging of cerebral energy metabolism with two-photon fluorescence lifetime microscopy of NADH," Biomed. Opt. Express 4, 307-321 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. Sokoloff, “The physiological and biochemical bases of functional brain imaging,” Cogn Neurodyn2(1), 1–5 (2008). [CrossRef] [PubMed]
  2. D. C. Wallace, “A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine,” Annu. Rev. Genet.39(1), 359–407 (2005). [CrossRef] [PubMed]
  3. M. Monsalve, S. Borniquel, I. Valle, and S. Lamas, “Mitochondrial dysfunction in human pathologies,” Front. Biosci.12(1), 1131–1153 (2007). [CrossRef] [PubMed]
  4. M. R. Duchen, “Mitochondria in health and disease: perspectives on a new mitochondrial biology,” Mol. Aspects Med.25(4), 365–451 (2004). [CrossRef] [PubMed]
  5. F. Hyder, “Dynamic imaging of brain function,” in Dynamic Brain Imaging: Multi-Modal Methods and In vivo Applications, F. Hyder, ed. (Humana, Totowa, NJ, 2009), pp. 3–21.
  6. B. Chance, P. Cohen, F. Jobsis, and B. Schoener, “Intracellular oxidation-reduction states in vivo: the microfluorometry of pyridine nucleotide gives a continuous measurement of the oxidation state,” Science137(3529), 499–508 (1962). [CrossRef] [PubMed]
  7. A. A. Heikal, “Intracellular coenzymes as natural biomarkers for metabolic activities and mitochondrial anomalies,” Biomarkers Med.4(2), 241–263 (2010). [CrossRef] [PubMed]
  8. B. Chance and B. Thorell, “Localization and kinetics of reduced pyridine nucleotide in living cells by microfluorometry,” J. Biol. Chem.234, 3044–3050 (1959). [PubMed]
  9. K. Svoboda and R. Yasuda, “Principles of two-photon excitation microscopy and its applications to neuroscience,” Neuron50(6), 823–839 (2006). [CrossRef] [PubMed]
  10. G. H. Patterson, S. M. Knobel, P. Arkhammar, O. Thastrup, and D. W. Piston, “Separation of the glucose-stimulated cytoplasmic and mitochondrial NAD(P)H responses in pancreatic islet β cells,” Proc. Natl. Acad. Sci. U.S.A.97(10), 5203–5207 (2000). [CrossRef] [PubMed]
  11. S. Huang, A. A. Heikal, and W. W. Webb, “Two-photon fluorescence spectroscopy and microscopy of NAD(P)H and flavoprotein,” Biophys. J.82(5), 2811–2825 (2002). [CrossRef] [PubMed]
  12. W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, and W. W. Webb, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” Proc. Natl. Acad. Sci. U.S.A.100(12), 7075–7080 (2003). [CrossRef] [PubMed]
  13. K. A. Kasischke, H. D. Vishwasrao, P. J. Fisher, W. R. Zipfel, and W. W. Webb, “Neural activity triggers neuronal oxidative metabolism followed by astrocytic glycolysis,” Science305(5680), 99–103 (2004). [CrossRef] [PubMed]
  14. W. Becker, Advanced Time-Correlated Single Photon Counting Techniques (Springer, Berlin, 2005).
  15. M. Y. Berezin and S. Achilefu, “Fluorescence lifetime measurements and biological imaging,” Chem. Rev.110(5), 2641–2684 (2010). [CrossRef] [PubMed]
  16. J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Springer, New York, 2006).
  17. D. F. Eaton, “Recommended methods for fluorescence decay analysis,” Pure Appl. Chem.62(8), 1631–1648 (1990). [CrossRef]
  18. R. Niesner, B. Peker, P. Schlüsche, and K.-H. Gericke, “Noniterative biexponential fluorescence lifetime imaging in the investigation of cellular metabolism by means of NAD(P)H autofluorescence,” ChemPhysChem5(8), 1141–1149 (2004). [CrossRef] [PubMed]
  19. H. D. Vishwasrao, A. A. Heikal, K. A. Kasischke, and W. W. Webb, “Conformational dependence of intracellular NADH on metabolic state revealed by associated fluorescence anisotropy,” J. Biol. Chem.280(26), 25119–25126 (2005). [CrossRef] [PubMed]
  20. Q. Yu and A. A. Heikal, “Two-photon autofluorescence dynamics imaging reveals sensitivity of intracellular NADH concentration and conformation to cell physiology at the single-cell level,” J. Photochem. Photobiol. B95(1), 46–57 (2009). [CrossRef] [PubMed]
  21. T. H. Chia, A. Williamson, D. D. Spencer, and M. J. Levene, “Multiphoton fluorescence lifetime imaging of intrinsic fluorescence in human and rat brain tissue reveals spatially distinct NADH binding,” Opt. Express16(6), 4237–4249 (2008). [CrossRef] [PubMed]
  22. M. C. Skala, K. M. Riching, A. Gendron-Fitzpatrick, J. Eickhoff, K. W. Eliceiri, J. G. White, and N. Ramanujam, “In vivo multiphoton microscopy of NADH and FAD redox states, fluorescence lifetimes, and cellular morphology in precancerous epithelia,” Proc. Natl. Acad. Sci. U.S.A.104(49), 19494–19499 (2007). [CrossRef] [PubMed]
  23. C. Stringari, A. Cinquin, O. Cinquin, M. A. Digman, P. J. Donovan, and E. Gratton, “Phasor approach to fluorescence lifetime microscopy distinguishes different metabolic states of germ cells in a live tissue,” Proc. Natl. Acad. Sci. U.S.A.108(33), 13582–13587 (2011). [CrossRef] [PubMed]
  24. S. Sakadžić, E. Roussakis, M. A. Yaseen, E. T. Mandeville, V. J. Srinivasan, K. Arai, S. Ruvinskaya, A. Devor, E. H. Lo, S. A. Vinogradov, and D. A. Boas, “Two-photon high-resolution measurement of partial pressure of oxygen in cerebral vasculature and tissue,” Nat. Methods7(9), 755–759 (2010). [CrossRef] [PubMed]
  25. M. A. Yaseen, V. J. Srinivasan, S. Sakadžić, H. Radhakrishnan, I. Gorczynska, W. Wu, J. G. Fujimoto, and D. A. Boas, “Microvascular oxygen tension and flow measurements in rodent cerebral cortex during baseline conditions and functional activation,” J. Cereb. Blood Flow Metab.31(4), 1051–1063 (2011). [CrossRef] [PubMed]
  26. L. K. Klaidman, A. C. Leung, and J. D. Adams., “High-performance liquid chromatography analysis of oxidized and reduced pyridine dinucleotides in specific brain regions,” Anal. Biochem.228(2), 312–317 (1995). [CrossRef] [PubMed]
  27. R. Guarneri and V. Bonavita, “Nicotinamide adenine dinucleotides in the developing rat brain,” Brain Res.2(2), 145–150 (1966). [CrossRef] [PubMed]
  28. Y. Avi-Dor, J. M. Olson, M. D. Doherty, and N. O. Kaplan, “Fluorescence of pyridine nucleotides in mitochondria,” J. Biol. Chem.237, 2377–2383 (1962).
  29. V. V. Ghukasyan and F.-J. Kao, “Monitoring cellular metabolism with fluorescence lifetime of reduced nicotinamide adenine dinucleotide,” J. Phys. Chem. C113(27), 11532–11540 (2009). [CrossRef]
  30. E. Gratton, S. Breusegem, J. Sutin, Q. Ruan, and N. Barry, “Fluorescence lifetime imaging for the two-photon microscope: time-domain and frequency-domain methods,” J. Biomed. Opt.8(3), 381–390 (2003). [CrossRef] [PubMed]
  31. M. Van Den Zegel, N. Boens, D. Daems, and F. C. De Schryver, “Possibilities and limitations of the time-correlated single photon counting technique: a comparative study of correction methods for the wavelength dependence of the instrument response function,” Chem. Phys.101(2), 311–335 (1986). [CrossRef]
  32. A. Habenicht, J. Hjelm, E. Mukhtar, F. Bergström, and L. B.-Å. Johansson, “Two-photon excitation and time-resolved fluorescence: I. The proper response function for analysing single-photon counting experiments,” Chem. Phys. Lett.354(5-6), 367–375 (2002). [CrossRef]
  33. K. Blinova, S. Carroll, S. Bose, A. V. Smirnov, J. J. Harvey, J. R. Knutson, and R. S. Balaban, “Distribution of mitochondrial NADH fluorescence lifetimes: steady-state kinetics of matrix NADH interactions,” Biochemistry44(7), 2585–2594 (2005). [CrossRef] [PubMed]
  34. E. Baraghis, A. Devor, Q. Fang, V. J. Srinivasan, W. Wu, F. Lesage, C. Ayata, K. A. Kasischke, D. A. Boas, and S. Sakadzić, “Two-photon microscopy of cortical NADH fluorescence intensity changes: correcting contamination from the hemodynamic response,” J. Biomed. Opt.16(10), 106003 (2011). [CrossRef] [PubMed]
  35. A. Nimmerjahn, F. Kirchhoff, J. N. D. Kerr, and F. Helmchen, “Sulforhodamine 101 as a specific marker of astroglia in the neocortex in vivo,” Nat. Methods1(1), 31–37 (2004). [CrossRef] [PubMed]
  36. A. Gafni and L. Brand, “Fluorescence decay studies of reduced nicotinamide adenine dinucleotide in solution and bound to liver alcohol dehydrogenase,” Biochemistry15(15), 3165–3171 (1976). [CrossRef] [PubMed]
  37. M. Wakita, G. Nishimura, and M. Tamura, “Some characteristics of the fluorescence lifetime of reduced pyridine nucleotides in isolated mitochondria, isolated hepatocytes, and perfused rat liver in situ,” J. Biochem.118(6), 1151–1160 (1995). [PubMed]
  38. T. G. Scott, R. D. Spencer, N. J. Leonard, and G. Weber, “Synthetic spectroscopic models related to coenzymes and base pairs. V. Emission properties of NADH. Studies of fluorescence lifetimes and quantum efficiencies of NADH, AcPyADH, [reduced acetylpyridineadenine dinucleotide] and simplified synthetic models,” J. Am. Chem. Soc.92(3), 687–695 (1970). [CrossRef]
  39. D. K. Bird, L. Yan, K. M. Vrotsos, K. W. Eliceiri, E. M. Vaughan, P. J. Keely, J. G. White, and N. Ramanujam, “Metabolic mapping of MCF10A human breast cells via multiphoton fluorescence lifetime imaging of the coenzyme NADH,” Cancer Res.65(19), 8766–8773 (2005). [CrossRef] [PubMed]
  40. V. K. Ramanujan, J. A. Jo, G. Cantu, and B. A. Herman, “Spatially resolved fluorescence lifetime mapping of enzyme kinetics in living cells,” J. Microsc.230(3), 329–338 (2008). [CrossRef] [PubMed]
  41. D. Li, W. Zheng, and J. Y. Qu, “Time-resolved spectroscopic imaging reveals the fundamentals of cellular NADH fluorescence,” Opt. Lett.33(20), 2365–2367 (2008). [CrossRef] [PubMed]
  42. M. W. Conklin, P. P. Provenzano, K. W. Eliceiri, R. Sullivan, and P. J. Keely, “Fluorescence lifetime imaging of endogenous fluorophores in histopathology sections reveals differences between normal and tumor epithelium in carcinoma in situ of the breast,” Cell Biochem. Biophys.53(3), 145–157 (2009). [CrossRef] [PubMed]
  43. Y. Sun, J. Phipps, D. S. Elson, H. Stoy, S. Tinling, J. Meier, B. Poirier, F. S. Chuang, D. G. Farwell, and L. Marcu, “Fluorescence lifetime imaging microscopy: in vivo application to diagnosis of oral carcinoma,” Opt. Lett.34(13), 2081–2083 (2009). [CrossRef] [PubMed]
  44. C. A. Thorling, X. Liu, F. J. Burczynski, L. M. Fletcher, G. C. Gobe, and M. S. Roberts, “Multiphoton microscopy can visualize zonal damage and decreased cellular metabolic activity in hepatic ischemia-reperfusion injury in rats,” J. Biomed. Opt.16(11), 116011 (2011). [CrossRef] [PubMed]
  45. D. L. Nelson and M. M. Cox, Lehninger Principles of Biochemistry (W.H. Freeman, New York, 2008).
  46. A. Devor, S. Sakadžić, P. A. Saisan, M. A. Yaseen, E. Roussakis, V. J. Srinivasan, S. A. Vinogradov, B. R. Rosen, R. B. Buxton, A. M. Dale, and D. A. Boas, “‘Overshoot’ of O₂ is required to maintain baseline tissue oxygenation at locations distal to blood vessels,” J. Neurosci.31(38), 13676–13681 (2011). [CrossRef] [PubMed]
  47. B. Chance, B. Schoener, R. Oshino, F. Itshak, and Y. Nakase, “Oxidation-reduction ratio studies of mitochondria in freeze-trapped samples. NADH and flavoprotein fluorescence signals,” J. Biol. Chem.254(11), 4764–4771 (1979). [PubMed]
  48. N. D. Kirkpatrick, C. Zou, M. A. Brewer, W. R. Brands, R. A. Drezek, and U. Utzinger, “Endogenous fluorescence spectroscopy of cell suspensions for chemopreventive drug monitoring,” Photochem. Photobiol.81(1), 125–134 (2005). [CrossRef] [PubMed]
  49. T. A. Wang, Y. V. Yu, G. Govindaiah, X. Ye, L. Artinian, T. P. Coleman, J. V. Sweedler, C. L. Cox, and M. U. Gillette, “Circadian rhythm of redox state regulates excitability in suprachiasmatic nucleus neurons,” Science337(6096), 839–842 (2012). [CrossRef] [PubMed]
  50. S. K. Shankar, “Biology of aging brain,” Indian J. Pathol. Microbiol.53(4), 595–604 (2010). [CrossRef] [PubMed]
  51. J. V. Rocheleau, W. S. Head, and D. W. Piston, “Quantitative NAD(P)H/flavoprotein autofluorescence imaging reveals metabolic mechanisms of pancreatic islet pyruvate response,” J. Biol. Chem.279(30), 31780–31787 (2004). [CrossRef] [PubMed]
  52. J. R. Lakowicz, ed., Principles of Fluorescence Spectroscopy (Springer, New York, 2006).
  53. M. vandeVen, M. Ameloot, B. Valeur, and N. Boens, “Pitfalls and their remedies in time-resolved fluorescence spectroscopy and microscopy,” J. Fluoresc.15(3), 377–413 (2005). [CrossRef] [PubMed]
  54. M. Köllner and J. Wolfrum, “How many photons are necessary for fluorescence-lifetime measurements?” Chem. Phys. Lett.200(1-2), 199–204 (1992). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited