OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 4, Iss. 2 — Feb. 1, 2013
  • pp: 331–348

Combined hemoglobin and fluorescence diffuse optical tomography for breast tumor diagnosis: a pilot study on time-domain methodology

Wei Zhang, Linhui Wu, Jiao Li, Xi Yi, Xin Wang, Yiming Lu, Weiting Chen, Zhongxing Zhou, Limin Zhang, Huijuan Zhao, and Feng Gao  »View Author Affiliations


Biomedical Optics Express, Vol. 4, Issue 2, pp. 331-348 (2013)
http://dx.doi.org/10.1364/BOE.4.000331


View Full Text Article

Enhanced HTML    Acrobat PDF (3659 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A combined time-domain fluorescence and hemoglobin diffuse optical tomography (DOT) system and the image reconstruction methods are proposed for enhancing the reliability of breast-dedicated optical measurement. The system equipped with two pulsed laser diodes at wavelengths of 780 nm and 830 nm that are specific to the peak excitation and emission of the FDA-approved ICG agent, and works with a 4-channel time-correlated single photon counting device to acquire the time-resolved distributions of the light re-emissions at 32 boundary sites of tissues in a tandem serial-to-parallel mode. The simultaneous reconstruction of the two optical (absorption and scattering) and two fluorescent (yield and lifetime) properties are achieved with the respective featured-data algorithms based on the generalized pulse spectrum technique. The performances of the methodology are experimentally assessed on breast-mimicking phantoms for hemoglobin- and fluorescence-DOT alone, as well as for fluorescence-guided hemoglobin-DOT. The results demonstrate the efficacy of improving the accuracy of hemoglobin-DOT based on a priori fluorescence localization.

© 2013 OSA

OCIS Codes
(170.3010) Medical optics and biotechnology : Image reconstruction techniques
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.6920) Medical optics and biotechnology : Time-resolved imaging
(170.6960) Medical optics and biotechnology : Tomography

ToC Category:
Diffuse Optical Imaging

History
Original Manuscript: December 21, 2012
Revised Manuscript: January 21, 2013
Manuscript Accepted: January 23, 2013
Published: January 25, 2013

Citation
Wei Zhang, Linhui Wu, Jiao Li, Xi Yi, Xin Wang, Yiming Lu, Weiting Chen, Zhongxing Zhou, Limin Zhang, Huijuan Zhao, and Feng Gao, "Combined hemoglobin and fluorescence diffuse optical tomography for breast tumor diagnosis: a pilot study on time-domain methodology," Biomed. Opt. Express 4, 331-348 (2013)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-4-2-331


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys.73(7), 076701 (2010). [CrossRef]
  2. A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol.50(4), R1–R43 (2005). [CrossRef] [PubMed]
  3. D. R. Leff, O. J. Warren, L. C. Enfield, A. P. Gibson, T. Athanasiou, D. K. Patten, J. C. Hebden, G. Z. Yang, and A. Darzi, “Diffuse optical imaging of the healthy and diseased breast: a systematic review,” Breast Cancer Res. Treat.108(1), 9–22 (2008). [CrossRef] [PubMed]
  4. B. J. Tromberg, B. W. Pogue, K. D. Paulsen, A. G. Yodh, D. A. Boas, and A. E. Cerussi, “Assessing the future of diffuse optical imaging technologies for breast cancer management,” Med. Phys.35(6), 2443–2451 (2008). [CrossRef] [PubMed]
  5. S. G. Demos, A. J. Vogel, and A. H. Gandjbakhche, “Advances in optical spectroscopy and imaging of breast lesions,” J. Mammary Gland Biol. Neoplasia11(2), 165–181 (2006). [CrossRef] [PubMed]
  6. X. Intes, “Time-domain optical mammography SoftScan: initial results,” Acad. Radiol.12(8), 934–947 (2005). [CrossRef] [PubMed]
  7. S. Fantini and A. Sassaroli, “Near-infrared optical mammography for breast cancer detection with intrinsic contrast,” Ann. Biomed. Eng.40(2), 398–407 (2012). [CrossRef] [PubMed]
  8. S. M. W. Y. van de Ven, S. G. Elias, A. J. Wiethoff, M. van der Voort, T. Nielsen, B. Brendel, C. Bontus, F. Uhlemann, R. Nachabe, R. Harbers, M. van Beek, L. Bakker, M. B. van der Mark, P. Luijten, and W. P. Mali, “Diffuse optical tomography of the breast: preliminary findings of a new prototype and comparison with magnetic resonance imaging,” Eur. Radiol.19(5), 1108–1113 (2009). [CrossRef] [PubMed]
  9. G. Gulsen, B. Xiong, O. Birgul, and O. Nalcioglu, “Design and implementation of a multifrequency near-infrared diffuse optical tomography system,” J. Biomed. Opt.11(1), 014020 (2006). [CrossRef] [PubMed]
  10. L. Spinelli, A. Torricelli, A. Pifferi, P. Taroni, G. M. Danesini, and R. Cubeddu, “Bulk optical properties and tissue components in the female breast from multiwavelength time-resolved optical mammography,” J. Biomed. Opt.9(6), 1137–1142 (2004). [CrossRef] [PubMed]
  11. H. Jiang, Y. Xu, N. Iftimia, J. Eggert, K. Klove, L. Baron, and L. Fajardo, “Three-dimensional optical tomographic imaging of breast in a human subject,” IEEE Trans. Med. Imaging20(12), 1334–1340 (2001). [CrossRef] [PubMed]
  12. L. C. Enfield, A. P. Gibson, N. L. Everdell, D. T. Delpy, M. Schweiger, S. R. Arridge, C. Richardson, M. Keshtgar, M. Douek, and J. C. Hebden, “Three-dimensional time-resolved optical mammography of the uncompressed breast,” Appl. Opt.46(17), 3628–3638 (2007). [CrossRef] [PubMed]
  13. B. Chance, S. Nioka, J. Zhang, E. F. Conant, E. Hwang, S. Briest, S. G. Orel, M. D. Schnall, and B. J. Czerniecki, “Breast cancer detection based on incremental biochemical and physiological properties of breast cancers: a six-year, two-site study,” Acad. Radiol.12(8), 925–933 (2005). [CrossRef] [PubMed]
  14. S. Srinivasan, B. W. Pogue, C. Carpenter, S. Jiang, W. A. Wells, S. P. Poplack, P. A. Kaufman, and K. D. Paulsen, “Developments in quantitative oxygen-saturation imaging of breast tissue in vivo using multispectral near-infrared tomography,” Antioxid. Redox Signal.9(8), 1143–1156 (2007). [CrossRef] [PubMed]
  15. D. Grosenick, H. Wabnitz, K. T. Moesta, J. Mucke, P. M. Schlag, and H. Rinneberg, “Time-domain scanning optical mammography: II. Optical properties and tissue parameters of 87 carcinomas,” Phys. Med. Biol.50(11), 2451–2468 (2005). [CrossRef] [PubMed]
  16. C. Li, S. R. Grobmyer, N. Massol, X. Liang, Q. Zhang, L. Chen, L. L. Fajardo, and H. B. Jiang, “Noninvasive in vivo tomographic optical imaging of cellular morphology in the breast: possible convergence of microscopic pathology and macroscopic radiology,” Med. Phys.35(6), 2493–2501 (2008). [CrossRef] [PubMed]
  17. V. Ntziachristos, A. G. Yodh, M. D. Schnall, and B. Chance, “MRI-guided diffuse optical spectroscopy of malignant and benign breast lesions,” Neoplasia4(4), 347–354 (2002a). [CrossRef] [PubMed]
  18. C. M. Carpenter, S. Srinivasan, B. W. Pogue, and K. D. Paulsen, “Methodology development for three-dimensional MR-guided near infrared spectroscopy of breast tumors,” Opt. Express16(22), 17903–17914 (2008). [CrossRef] [PubMed]
  19. Q. Fang, S. A. Carp, J. Selb, G. Boverman, Q. Zhang, D. B. Kopans, R. H. Moore, E. L. Miller, D. H. Brooks, and D. A. Boas, “Combined optical imaging and mammography of the healthy breast: optical contrast derived from breast structure and compression,” IEEE Trans. Med. Imaging28(1), 30–42 (2009). [CrossRef] [PubMed]
  20. Q. Zhu, S. H. Kurtzma, P. Hegde, S. Tannenbaum, M. Kane, M. Huang, N. G. Chen, B. Jagjivan, and K. Zarfos, “Utilizing optical tomography with ultrasound localization to image heterogeneous hemoglobin distribution in large breast cancers,” Neoplasia7(3), 263–270 (2005). [CrossRef] [PubMed]
  21. V. Ntziachristos, A. G. Yodh, M. Schnall, and B. Chance, “Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement,” Proc. Natl. Acad. Sci. U.S.A.97(6), 2767–2772 (2000). [CrossRef] [PubMed]
  22. X. Intes, J. Ripoll, Y. Chen, S. Nioka, A. G. Yodh, and B. Chance, “In vivo continuous-wave optical breast imaging enhanced with Indocyanine Green,” Med. Phys.30(6), 1039–1047 (2003). [CrossRef] [PubMed]
  23. A. Corlu, R. Choe, T. Durduran, M. A. Rosen, M. Schweiger, S. R. Arridge, M. D. Schnall, and A. G. Yodh, “Three-dimensional in vivo fluorescence diffuse optical tomography of breast cancer in humans,” Opt. Express15(11), 6696–6716 (2007). [CrossRef] [PubMed]
  24. S. M. W. Y. van de Ven, A. J. Wiethoff, T. Nielsen, B. Brendel, M. van der Voort, R. Nachabe, M. Van der Mark, M. Van Beek, L. Bakker, L. Fels, S. Elias, P. Luijten, and W. Mali, “A novel fluorescent imaging agent for diffuse optical tomography of the breast: first clinical experience in patients,” Mol. Imaging Biol.12(3), 343–348 (2010). [CrossRef] [PubMed]
  25. V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of whole-body photonic imaging,” Nat. Biotechnol.23(3), 313–320 (2005). [CrossRef] [PubMed]
  26. E. Kuwana and E. M. Sevick-Muraca, “Fluorescence lifetime spectroscopy for pH sensing in scattering media,” Anal. Chem.75(16), 4325–4329 (2003). [CrossRef] [PubMed]
  27. A. Godavarty, M. J. Eppstein, C. Zhang, S. Theru, A. B. Thompson, M. Gurfinkel, and E. M. Sevick-Muraca, “Fluorescence-enhanced optical imaging in large tissue volumes using a gain-modulated ICCD camera,” Phys. Med. Biol.48(12), 1701–1720 (2003). [CrossRef] [PubMed]
  28. A. Hagen, D. Grosenick, R. Macdonald, H. Rinneberg, S. Burock, P. Warnick, A. Poellinger, and P. M. Schlag, “Late-fluorescence mammography assesses tumor capillary permeability and differentiates malignant from benign lesions,” Opt. Express17(19), 17016–17033 (2009). [CrossRef] [PubMed]
  29. A. Leproux, M. van der Voort, M. B. van der Mark, R. Harbers, S. M. van de Ven, and T. G. van Leeuwen, “Optical mammography combined with fluorescence imaging: lesion detection using scatterplots,” Biomed. Opt. Express2(4), 1007–1020 (2011). [CrossRef] [PubMed]
  30. S. Achilefu, R. B. Dorshow, J. E. Bugaj, and R. Rajagopalan, “Novel receptor-targeted fluorescent contrast agents for in vivo tumor imaging,” Invest. Radiol.35(8), 479–485 (2000). [CrossRef] [PubMed]
  31. F. Gao, J. Li, L. M. Zhang, P. Poulet, H. J. Zhao, and Y. Yamada, “Simultaneous fluorescence yield and lifetime tomography from time-resolved transmittances of small-animal-sized phantom,” Appl. Opt.49(16), 3163–3172 (2010). [CrossRef] [PubMed]
  32. E. M. C. Hillman, J. C. Hebden, F. E. W. Schmidt, S. R. Arridge, M. Schweiger, H. Dehgani, and D. T. Deply, “Calibration techniques and datatype extraction for time-resolved optical tomography,” Rev. Sci. Instrum.71(9), 3415–3427 (2000). [CrossRef]
  33. W. Becker, Advanced Time-Correlated Single Photon Counting Techniques (Springer-Verlag, Berlin, 2005).
  34. V. Ntziachristos, C. H. Tung, C. Bremer, and R. Weissleder, “Fluorescence molecular tomography resolves protease activity in vivo,” Nat. Med.8(7), 757–761 (2002B). [CrossRef] [PubMed]
  35. F. Gao, H. J. Zhao, Y. Tanikawa, and Y. Yamada, “Time-resolved diffuse optical tomography using a modified generalized pulse spectrum technique,” IEICE Trans. Inf. Sys E85-D, 133–142 (2002).
  36. H. J. Zhao, F. Gao, Y. Tanikawa, and Y. Yamada, “Time-resolved diffuse optical tomography and its application to in vitro and in vivo imaging,” J. Biomed. Opt.12(6), 062107 (2007). [CrossRef] [PubMed]
  37. K. Furutsu and Y. Yamada, “Diffusion approximation for a dissipative random medium and the applications,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics50(5), 3634–3640 (1994). [CrossRef] [PubMed]
  38. F. Gao, H. J. Zhao, Y. Tanikawa, and Y. Yamada, “A linear, featured-data scheme for image reconstruction in time-domain fluorescence molecular tomography,” Opt. Express14(16), 7109–7124 (2006). [CrossRef] [PubMed]
  39. S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl.15(2), R41–R93 (1999). [CrossRef]
  40. X. Intes, V. Ntziachristos, J. P. Culver, A. Yodh, and B. Chance, “Projection access order in algebraic reconstruction technique for diffuse optical tomography,” Phys. Med. Biol.47(1), N1–N10 (2002). [CrossRef] [PubMed]
  41. H. Dehghani, S. Srinivasan, B. W. Pogue, and A. P. Gibson, “Numerical modeling and imaging reconstruction in diffuse optical tomography,” Phil. Trans. R. Soc. A Math. Phys. Eng. Sci.367(1900), 3073–3093 (2009). [CrossRef]
  42. G. R. Walsh, Methods of Optimization (Wiley, New York, 1975).
  43. D. Qin, H. J. Zhao, Y. Tanikawa, and F. Gao, “Experimental determination of optical properties in turbid medium by TCSPC technique,” Proc. SPIE6434, 64342E, 64342E-10 (2007). [CrossRef]
  44. F. S. Azar and X. Intes, Translational Multimodality Optical Imaging (Artech House, Boston, 2008), Chap. 8.
  45. F. Gao, H. J. Zhao, Y. Tinikawa, K. Homma, and Y. Yamada, “Influences of target size and contrast on near infrared diffuse optical tomography—a comparison between featured-data and full time-resolved scheme,” Opt. Quantum Electron.37(13-15), 1287–1304 (2005). [CrossRef]
  46. D. D. Nolting, J. C. Gore, and W. Pham, “Near-infrared dyes: probe development and applications in optical molecular imaging,” Curr Org Synth8(4), 521–534 (2011). [CrossRef] [PubMed]
  47. M. E. Kilmer, E. L. Miller, A. Barbaro, and D. A. Boas, “Three-dimensional shape-based imaging of absorption perturbation for diffuse optical tomography,” Appl. Opt.42(16), 3129–3144 (2003). [CrossRef] [PubMed]
  48. M. Zacharopoulos, M. Schweiger, V. Kolehmainen, and S. Arridge, “3D shape based reconstruction of experimental data in diffuse optical tomography,” Opt. Express17(21), 18940–18956 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited