OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 4, Iss. 3 — Mar. 1, 2013
  • pp: 397–411

Automatic segmentation of the choroid in enhanced depth imaging optical coherence tomography images

Jing Tian, Pina Marziliano, Mani Baskaran, Tin Aung Tun, and Tin Aung  »View Author Affiliations


Biomedical Optics Express, Vol. 4, Issue 3, pp. 397-411 (2013)
http://dx.doi.org/10.1364/BOE.4.000397


View Full Text Article

Enhanced HTML    Acrobat PDF (3278 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Enhanced Depth Imaging (EDI) optical coherence tomography (OCT) provides high-definition cross-sectional images of the choroid in vivo, and hence is used in many clinical studies. However, the quantification of the choroid depends on the manual labelings of two boundaries, Bruch’s membrane and the choroidal-scleral interface. This labeling process is tedious and subjective of inter-observer differences, hence, automatic segmentation of the choroid layer is highly desirable. In this paper, we present a fast and accurate algorithm that could segment the choroid automatically. Bruch’s membrane is detected by searching the pixel with the biggest gradient value above the retinal pigment epithelium (RPE) and the choroidal-scleral interface is delineated by finding the shortest path of the graph formed by valley pixels using Dijkstra’s algorithm. The experiments comparing automatic segmentation results with the manual labelings are conducted on 45 EDI-OCT images and the average of Dice’s Coefficient is 90.5%, which shows good consistency of the algorithm with the manual labelings. The processing time for each image is about 1.25 seconds.

© 2013 OSA

OCIS Codes
(100.0100) Image processing : Image processing
(100.2960) Image processing : Image analysis
(110.4500) Imaging systems : Optical coherence tomography
(170.4470) Medical optics and biotechnology : Ophthalmology

ToC Category:
Image Processing

History
Original Manuscript: October 19, 2012
Revised Manuscript: January 6, 2013
Manuscript Accepted: January 14, 2013
Published: February 11, 2013

Citation
Jing Tian, Pina Marziliano, Mani Baskaran, Tin Aung Tun, and Tin Aung, "Automatic segmentation of the choroid in enhanced depth imaging optical coherence tomography images," Biomed. Opt. Express 4, 397-411 (2013)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-4-3-397


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. Margolis and R. F. Spaide, “A pilot study of enhanced depth imaging optical coherence tomography of the choroid in normal eyes,” Am. J. Ophthalmol.147, 811–815 (2009). [CrossRef] [PubMed]
  2. H. A. Quigley, “What’s the choroid got to do with angle closure?” Arch. Ophthalmol.127(5), 693–4 (2009). [CrossRef] [PubMed]
  3. Y. Ikuno, K. Kawaguchi, T. Nouchi, and Y. Yasuno, “Choroidal thickness in healthy Japanese subjects,” Invest. Ophthalmol. Vis. Sci.51, 2173–2176 (2010). [CrossRef]
  4. X. Ding, J. Li, J. Zeng, W. Ma, R. Liu, T. Li, S. Yu, and S. Tang, “Choroidal thickness in healthy Chinese subjects,” Invest. Ophthalmol. Vis. Sci.52, 9555–9560 (2011). [CrossRef] [PubMed]
  5. V. Manjunath, M. Taha, J. G. Fujimoto, and J. S. Duker, “Choroidal thickness in normal eyes measured using Cirrus HD optical coherence tomography,” Am. J. Ophthalmol.150, 325–329 (2010). [CrossRef] [PubMed]
  6. D. L. Nickla, C. Wildsoet, and J. Wallman, “The circadian rhythm in intraocular pressure and its relation to diurnal ocular growth changes in chicks,” Exp. Eye. Res.66, 183–193 (1998). [CrossRef] [PubMed]
  7. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science254, 1178–1181 (1991). [CrossRef] [PubMed]
  8. R. K. Wang, “Signal degradation by multiple scattering in optical coherence tomography of dense tissue: a monte carlo study towards optical clearing of biotissues,” Phys. Med. Biol.47, 2281–2299 (2002). [CrossRef] [PubMed]
  9. R. F. Spaide, H. Koizumi, M. C. Pozzoni, and M. C. Pozonni, “Enhanced depth imaging spectral-domain optical coherence tomography,” Am. J. Ophthalmol.146, 496–500 (2008). [CrossRef] [PubMed]
  10. S. E. Chung, S. W. Kang, J. H. Lee, and Y. T. Kim, “Choroidal thickness in polypoidal choroidal vasculopathy and exudative age-related macular degeneration,” Ophthalmology118, 840–845 (2011). [CrossRef] [PubMed]
  11. A. H. C. Fong, K. K. W. Li, and D. Wong, “Choroidal evaluation using enhanced depth imaging spectral-domain optical coherence tomography in Vogt-Koyanagi-Harada disease,” Retina31, 502–509 (2011). [CrossRef] [PubMed]
  12. I. Maruko, T. Iida, Y. Sugano, A. Ojima, and T. Sekiryu, “Subfoveal choroidal thickness in fellow eyes of patients with central serous chorioretinopathy,” Retina31, 1603–1608 (2011). [CrossRef] [PubMed]
  13. J.-C. Mwanza, J. T. Hochberg, M. R. Banitt, W. J. Feuer, and D. L. Budenz, “Lack of association between glaucoma and macular choroidal thickness measured with enhanced depth-imaging optical coherence tomography,” Invest. Ophthalmol. Vis Sci.52, 3430–3435 (2011). [CrossRef] [PubMed]
  14. I. Maruko, T. Iida, Y. Sugano, A. Ojima, M. Ogasawara, and R. F. Spaide, “Subfoveal choroidal thickness after treatment of central serous chorioretinopathy,” Ophthalmology117, 1792–1799 (2010). [CrossRef] [PubMed]
  15. I. Maruko, T. Iida, Y. Sugano, H. Oyamada, T. Sekiryu, T. Fujiwara, and R. F. Spaide, “Subfoveal choroidal thickness after treatment of Vogt-Koyanagi-Harada disease,” Retina31, 510–517 (2011). [CrossRef]
  16. A. Yazdanpanah and G. Hamar, “Segmentation of intra-retinal layers from optical coherence tomgraphy images using an active contour approach,” IEEE Trans. Med. Imaging30, 484–496 (2011). [CrossRef]
  17. M. K. Garvin, M. D. Abramoff, R. Kardon, S. R. Russell, X. Wu, and M. Sonka, “Intraretinal layer segmentation of macular optical coherence tomography images using optimal 3-D graph search,” IEEE Trans. Med. Imaging27, 1495–1505 (2008). [CrossRef] [PubMed]
  18. S. J. Chiu, X. T. Li, P. Nicholas, C. A. Toth, J. A. Izatt, and S. Farsiu, “Automatic segmentation of seven retinal layers in SD-OCT images congruent with expert manual segmentation,” Opt. Express18, 19413–19428 (2010). [CrossRef] [PubMed]
  19. Q. Yang, C. A. Reisman, Z. Wang, Y. Fukuma, M. Hangai, N. Yoshimura, A. Tomidokoro, M. Araie, A. S. Raza, D. C. Hood, and K. Chan, “Automated layer segmentation of macular OCT images using dual-scale gradient information.” Opt. Express18, 21293–21307 (2010). [CrossRef] [PubMed]
  20. D. Koozekanani, K. Boyer, and C. Roberts, “Retinal thickness measurements from optical coherence tomgraphy using a Markov boundary model,” IEEE Trans. Med. Imaging20, 906–916 (2001). [CrossRef]
  21. L. Zhang, K. Lee, M. Niemeijer, R. F. Mullins, M. Sonka, and M. D. Abramoff, “Automated segmentation of the choroid from clinical SD-OCT,” Invest. Ophthalmol. Vis. Sci.53, 7510–7519 (2012). [CrossRef] [PubMed]
  22. V. Kajic, M. Esmaeelpour, B. Povazay, D. Marshall, P. L. Rosin, and W. Drexler, “Automated choroidal segmentation of 1060 nm OCT in healthy and pathologic eyes using a statistical mode,” Biomed. Opt. Express3, 86–103 (2012). [CrossRef] [PubMed]
  23. T. Torzicky, M. Pircher, S. Zotter, M. Bonesi, E. Gotzinger, and C. K. Hitzenberger, “Automated measurement of choroidal thickness in the human eye by polarization sensitive optical coherence tomography,” Opt. Express20, 7564–7574 (2012). [CrossRef] [PubMed]
  24. L. Duan, M. Yamanari, and Y. Yasuno, “Automated phase retardation oriented segmentation of chorio-scleral interface by polarization sensitive optical coherence tomography,” Opt. Express20, 3353–3366 (2012). [CrossRef] [PubMed]
  25. D. Nickla and J. Wallman, “The multifunctional choroid,” Prog. Retinal Res.29, 144–168 (2010). [CrossRef]
  26. E. W. Dijkstra, “A note on two problems in connexion with graphs,” Numerische Math.1, 269–271 (1959). [CrossRef]
  27. J. Tian and P. Marziliano, “Location-based graph search algorithm for boundary detection in oct images,” to be submitted to IEEE Trans. Med. Imaging.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited