OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 4, Iss. 3 — Mar. 1, 2013
  • pp: 433–446

Genetic algorithms and MCML program for recovery of optical properties of homogeneous turbid media

Beatriz Morales Cruzado, Sergio Vázquez y Montiel, and José Alberto Delgado Atencio  »View Author Affiliations

Biomedical Optics Express, Vol. 4, Issue 3, pp. 433-446 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (929 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper, we present and validate a new method for optical properties recovery of turbid media with slab geometry. This method is an iterative method that compares diffuse reflectance and transmittance, measured using integrating spheres, with those obtained using the known algorithm MCML. The search procedure is based in the evolution of a population due to selection of the best individual, i.e., using a genetic algorithm. This new method includes several corrections such as non-linear effects in integrating spheres measurements and loss of light due to the finite size of the sample. As a potential application and proof-of-principle experiment of this new method, we use this new algorithm in the recovery of optical properties of blood samples at different degrees of coagulation.

© 2013 OSA

OCIS Codes
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(170.5280) Medical optics and biotechnology : Photon migration
(290.7050) Scattering : Turbid media

ToC Category:
Optics of Tissue and Turbid Media

Original Manuscript: October 19, 2012
Revised Manuscript: November 29, 2012
Manuscript Accepted: December 22, 2012
Published: February 15, 2013

Beatriz Morales Cruzado, Sergio Vázquez y Montiel, and José Alberto Delgado Atencio, "Genetic algorithms and MCML program for recovery of optical properties of homogeneous turbid media," Biomed. Opt. Express 4, 433-446 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, New York, 1978).
  2. A. Roggan, K. Dorschel, G. Muller, M. Friebel, and A. Hahn, “Optical properties of circulating human blood in the wavelength range 400–2500 nm,” J. Biomed. Opt.4, 36–46 (1999). [CrossRef] [PubMed]
  3. L. V. Wang and H. Wu, Biomedical Optics (Wiley, 2007).
  4. P. Kubelka, “New contributions to the optics of intensely light-scattering materials,” J. Opt. Soc. Am.38, 448–457 (1948). [CrossRef] [PubMed]
  5. P. Kubelka, “New contributions to the optics of intensely light-scattering materials. part ii: Nonhomogeneus layers,” J. Opt. Soc. Am.44, 330–335 (1954). [CrossRef]
  6. S. Q. Duntley, “The optical properties of diffusing materials,” J. Opt. Soc. Am.32, 61–70 (1942). [CrossRef]
  7. A. L. Lathrop, “Diffuse scattered radiation theories of duntley and of kubelka-munk,” J. Opt. Soc. Am.55, 1097–1104 (1965). [CrossRef]
  8. B. L. Diffey, “A mathematical model for ultraviolet optics in skin,” Phys. Med. Biol.28, 647–657 (1983). [CrossRef] [PubMed]
  9. P. S. Mudgett and L. W. Richards, “Multiple scattering calculations for technology,” Appl. Opt.10, 1485–1502 (1971). [CrossRef] [PubMed]
  10. S. A. Prahl, I. A. Vitkin, B. C. Wilson, and R. R. Anderson, “Determination of optical properties of turbid media using pulsed photothermal radiometry,” Phys. Med. Biol.37, 1203–1217 (1992). [CrossRef] [PubMed]
  11. M. S. Patterson, B. Chance, and B. Wilson, “Time resolved reflectance and transmittance for the non-invasive measurements of tissue optical properties,” Appl. Opt.28, 2331–2336 (1989). [CrossRef] [PubMed]
  12. M. S. Patterson, E. Schwarts, and B. Wilson, “Quantitative reflectance spectrophotometry for the noninvasive measurement of photosensitizer concentration in tissue during photodynamic therapy,” Proc. SPIE1065, 115–122, (1989). [CrossRef]
  13. S. K. Jacques and S. A. Prahl, “Modeling optical and thermal distributions in tissue during laser irradiation,” Lasers Surg. Med.6, 494–503 (1987). [CrossRef] [PubMed]
  14. G. Yoon, F. Liu, and R. R. Alfano, “Accuracies of the diffusion approximation and its similarity relations for laser irradiated biological media,” Appl. Opt.28, 2250–2255 (1989). [CrossRef] [PubMed]
  15. S. A. Prahl, M. J. C. van Gemert, and A. J. Welch, “Determining the optical properties of turbid media by using the adding-doubling method,” Appl. Opt.32, 559–568 (1993). [CrossRef] [PubMed]
  16. H. C. van de Hulst, Multiple Light Scattering (Academic, New York, 1980), Vol 1.
  17. A. Roggan, G. Muller, and M. Meinke, “Determination of optical properties of human blood in the spectral range 250 to 1100 nm using Monte Carlo simulations with hematocrit-dependent effective scattering phase functions,” J. Biomed. Opt.11, 34021 (2006). [CrossRef] [PubMed]
  18. C. R. Simpson, M. Kohl, M. Essenpreis, and M. Cope, “Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique,” Phys. Rev. Biol.43, 2465–2478 (1998).
  19. J. S. Dam, T. Dalgaard, P. E. Fabricius, and S. Andersson-Engels, “Multiple polynomial regression method for determination of biomedical optical properties from integrating sphere measurements,” Appl. Opt.39, 1202–1209 (2000). [CrossRef]
  20. A. M. K. Nilsson, R. Berg, and S. Andersson-Engels, “Measurements of the optical properties of tissue in conjunction with photodynamic therapy,” Appl. Opt.34, 4609–4619 (1995). [CrossRef] [PubMed]
  21. I. V. Yaroslavsky, A. N. Yaroslavsky, T. Goldbach, and H.-J. Schwarzmaier, “Inverse hybrid technique for determining the optical properties of turbid media from integrating-sphere measurements,” Appl. Opt.34, 6797–6809 (1996) [CrossRef]
  22. M. Hammer, A. Roggan, D. Schweitzer, and G. Mller, “Optical properties of ocular fundus tissues-an in vitro study using the double-integrating-sphere technique and inverse Monte Carlo simulation,” Phys. Med. Biol.40, 963–978 (1995). [CrossRef] [PubMed]
  23. M. Meinke, G. Muller, J. Helfmann, and M. Friebel, “Optical properties of platelets and blood plasma and their influence on the optical behavior of whole blood in the visible to near infrared wavelength range,” J. Biomed. Opt.12, 014024 (2007). [CrossRef] [PubMed]
  24. A. M. Nilsson, G. W. Lucassen, W. Verkruysse, S. Andersson-Engels, and M. J. C. van Gemert, “Changes in optical properties of human whole blood in vitro due to slow heating,” Photochem. Photobiol.65, 366–373 (1997). [CrossRef] [PubMed]
  25. P. Starukhin, S. Ulyanov, E. Galanzha, and V. Tuchin, “Blood-flow measurements with a small number of scattering events,” Appl. Opt.39, 2823–2830 (2000). [CrossRef]
  26. D. Sardar and L. Levy, “Optical properties of whole blood,” Lasers Med. Sci.13, 106–111 (1998). [CrossRef]
  27. H. Liu, D. A. Boas, Y. Zhang, A. G. Yodh, and B. Chance, “Determination of optical properties and blood oxygenation in tissue using continuous nir light,” Phys. Med. Biol.40, 1983–1993 (1995). [CrossRef] [PubMed]
  28. D. J. Faber, M. C. Aalders, E. G. Mik, B. A. Hooper, M. J. van Gemert, and T. G. van Leeuwen, “Oxygen saturation-dependent absorption and scattering of blood,” Phys. Rev. Lett.93(2), 028102 (2004). [CrossRef] [PubMed]
  29. A. C. Guyton and T. E. Hall, Medical Physiology (Elsevier Science, 2006).
  30. T. Moffitt, Y. C. Chen, and S. A. Prahl, “Preparation and characterization of polyurethane optical phantoms,” J. Biomed. Opt.11, 041103 (2006). [CrossRef] [PubMed]
  31. L.-H. Wang, S. L. Jacques, and L. Q. Zheng, “Monte Carlo modeling of photon transport in multi-layered tissues,” Comput. Meth. Prog. Biol.47, 131–146 (1995). [CrossRef]
  32. S. A. Prahl, M. Keijzer, S. L. Jacques, and A. J. Welch, “A Monte Carlo model of light propagation in tissue,” in Dosimetry of Laser Radiation in Medicine and Biology, G. J. Müller and D. H. Sliney, eds. (SPIE, Bellingham, WA, 1989), pp. 102–111.
  33. M. Gen and R. Cheng, Genetic Algorithms and Engineering Design (Wiley, 1997).
  34. M. B and S. V. y Montiel, “Obtención de los parámetros ópticos de la piel usando algoritmos genéticos y mcml,” Rev. Mex. Fis.57, 375–381 (2011).
  35. T. Vo-Dinh, Biomedical Photonics (CRC Press, 2003). [CrossRef]
  36. B. Morales, S. V. y Montiel, and J. A. D. Atencio, “Behavior of optical properties of coagulated blood sample at 633 nm wavelength,” Proc. SPIE7897, 78970S (2011). [CrossRef]
  37. B. Morales, S. A. Prahl, J. A. D. Atencio, and S. V. y Montiel, “Validation of ga-mcml algorithm against iad program,” Proc. SPIE8011, 80118O (2011). [CrossRef]
  38. S. Prahl, Inverse Adding-Doubling for Optical Property Measurements (2007), http://omlc.ogi.edu/software/iad/index.html .
  39. J. H. Torres, A. J. Welch, I. Çilesiz, and M. Motamedi, “Tissue optical property measurements: overestimation of absorption coefficient with spectrophotometric techniques,” Lasers Surg. Med.14, 249–257 (1994). [CrossRef] [PubMed]
  40. G. de Vries, J. F. Beek, G. W. Lucassen, and M. van Gemert, “The effect of light losses in double integrating spheres on optical properties estimation,” IEEE J. Sel. Top. Quantum Electron.5, 944–947 (1999). [CrossRef]
  41. J. W. Pickering, S. A. Prahl, N. van Wieringen, J. F. Beek, H. J. C. M. Sterenborg, and M. J. C. van Gemert, “Double-integrating-sphere system for measuring the optical properties of tissue,” Appl. Opt.32, 399–410 (1993). [CrossRef] [PubMed]
  42. J. W. Pickering, C. J. M. Moes, H. J. C. M. Sterenborg, S. A. Prahl, and M. J. C. van Gemert, “Two integrating sphere with an intervening scattering sample,” J. Opt. Soc. Am9, 621–631 (1992). [CrossRef]
  43. A. M. Nilsson, P. Alsholm, A. Karlsson, and S. Andersson-Engels, “T-matrix computations of light scattering by red blood cells,” Appl. Opt.37, 2735–2748 (1998). [CrossRef]
  44. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Elsevier Science, 2006).
  45. W. F. Cheong, S. A. Prahl, and A. J. Welch, “Review of the optical properties of a biological tissues,” IEEE J. Quantum Electron.26, 2166–2185 (1990). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited