OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 4, Iss. 4 — Apr. 1, 2013
  • pp: 490–499

Visible and near infrared resonance plasmonic enhanced nanosecond laser optoporation of cancer cells

Bastien St-Louis Lalonde, Étienne Boulais, Jean-Jacques Lebrun, and Michel Meunier  »View Author Affiliations

Biomedical Optics Express, Vol. 4, Issue 4, pp. 490-499 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1098 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper, we report a light driven, non-invasive cell membrane perforation technique based on the localized field amplification by a nanosecond pulsed laser near gold nanoparticles (AuNPs). The optoporation phenomena is investigated with pulses generated by a Nd:YAG laser for two wavelengths that are either in the visible (532 nm) or near infrared (NIR) (1064 nm). Here, the main objective is to compare on and off localized surface plasmonic resonance (LSPR) to introduce foreign material through the cell membrane using nanosecond laser pulses. The membrane permeability of human melanoma cells (MW278) has been successfully increased as shown by the intake of a fluorescent dye upon irradiation. The viability of this laser driven perforation method is evaluated by propidium iodide exclusion as well as MTT assay. Our results show that up to 25% of the cells are perforated with 532 nm pulses at 50 mJ/cm2 and around 30% of the cells are perforated with 1064 nm pulses at 1 J/cm2. With 532 nm pulses, the viability 2 h after treatment is 64% but it increases to 88% 72 h later. On the other hand, the irradiation with 1064 nm pulses leads to an improved 2 h viability of 81% and reaches 98% after 72 h. Scanning electron microscopy images show that the 5 pulses delivered during treatment induce changes in the AuNPs size distribution when irradiated by a 532 nm beam, while this distribution is barely affected when 1064 nm is used.

© 2013 OSA

OCIS Codes
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology
(140.3538) Lasers and laser optics : Lasers, pulsed

ToC Category:
Cell Studies

Original Manuscript: November 28, 2012
Revised Manuscript: January 18, 2013
Manuscript Accepted: January 21, 2013
Published: March 1, 2013

Bastien St-Louis Lalonde, Étienne Boulais, Jean-Jacques Lebrun, and Michel Meunier, "Visible and near infrared resonance plasmonic enhanced nanosecond laser optoporation of cancer cells," Biomed. Opt. Express 4, 490-499 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. Alberts, D. Bray, K. Hopkin, A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter, Essential Cell Biology, 2nd ed. (Garland Science, 2009).
  2. S. D. Li and L. Huang, “Gene therapy progress and prospects: non-viral gene therapy by systemic delivery,” Gene Ther.13(18), 1313–1319 (2006). [CrossRef] [PubMed]
  3. P. M. Patil, P. D. Chaudharie, M. Sahu, and J. Duragkar, “Review article on gene therapy,” Int. J. Genetics4, 74–79 (2012).
  4. K. A. Whitehead, R. Langer, and D. G. Anderson, “Knocking down barriers: advances in siRNA delivery,” Nat. Rev. Drug Discov.8(2), 129–138 (2009). [CrossRef] [PubMed]
  5. S. Florea, K. Andreeva, C. Machado, P. M. Mirabito, and C. L. Schardl, “Elimination of marker genes from transformed filamentous fungi by unselected transient transfection with a Cre-expressing plasmid,” Fungal Genet. Biol.46(10), 721–730 (2009). [CrossRef] [PubMed]
  6. C. H. Evans, S. C. Ghivizzani, and P. D. Robbins, “Arthritis gene therapy’s first death,” Arthritis Res. Ther.10(3), 110 (2008). [CrossRef] [PubMed]
  7. S. Lehrman, “Virus treatment questioned after gene therapy death,” Nature401(6753), 517–518 (1999). [CrossRef] [PubMed]
  8. A. Pathak, S. Patnaik, and K. C. Gupta, “Recent trends in non-viral vector-mediated gene delivery,” Biotechnol. J.4(11), 1559–1572 (2009). [CrossRef] [PubMed]
  9. Y. Zhao, Z. Zheng, C. J. Cohen, L. Gattinoni, D. C. Palmer, N. P. Restifo, S. A. Rosenberg, and R. A. Morgan, “High-efficiency transfection of primary human and mouse T lymphocytes using RNA electroporation,” Mol. Ther.13(1), 151–159 (2006). [CrossRef] [PubMed]
  10. L. M. Mir, “Nucleic acids electrotransfer-based gene therapy (electrogenetherapy): past, current, and future,” Mol. Biotechnol.43(2), 167–176 (2009). [CrossRef] [PubMed]
  11. Y. Zhang and L. C. Yu, “Single-cell microinjection technology in cell biology,” Bioessays30(6), 606–610 (2008). [CrossRef] [PubMed]
  12. M. Ogura, S. Sato, K. Nakanishi, M. Uenoyama, T. Kiyozumi, D. Saitoh, T. Ikeda, H. Ashida, and M. Obara, “In vivo targeted gene transfer in skin by the use of laser-induced stress waves,” Lasers Surg. Med.34(3), 242–248 (2004). [CrossRef] [PubMed]
  13. S. Takano, S. Sato, M. Terakawa, H. Asida, H. Okano, and M. Obara, “Enhanced transfection efficiency in laser-induced stress wave-assisted gene transfer at low laser fluence by increasing pressure impulse,” Appl. Phys. Express1, 038001 (2008). [CrossRef]
  14. M. Lei, H. Xu, H. Yang, and B. Yao, “Femtosecond laser-assisted microinjection into living neurons,” J. Neurosci. Methods174(2), 215–218 (2008). [CrossRef] [PubMed]
  15. J. Baumgart, W. Bintig, A. Ngezahayo, S. Willenbrock, H. Murua Escobar, W. Ertmer, H. Lubatschowski, and A. Heisterkamp, “Quantified femtosecond laser based opto-perforation of living GFSHR-17 and MTH53 a cells,” Opt. Express16(5), 3021–3031 (2008). [CrossRef] [PubMed]
  16. C. M. Pitsillides, E. K. Joe, X. Wei, R. R. Anderson, and C. P. Lin, “Selective cell targeting with light-absorbing microparticles and nanoparticles,” Biophys. J.84(6), 4023–4032 (2003). [CrossRef] [PubMed]
  17. J. Baumgart, L. Humbert, É. Boulais, R. Lachaine, J. J. Lebrun, and M. Meunier, “Off-resonance plasmonic enhanced femtosecond laser optoporation and transfection of cancer cells,” Biomaterials33(7), 2345–2350 (2012). [CrossRef] [PubMed]
  18. C. Yao, R. Rahmanzadeh, E. Endl, Z. Zhang, J. Gerdes, and G. Hüttmann, “Elevation of plasma membrane permeability by laser irradiation of selectively bound nanoparticles,” J. Biomed. Opt.10(6), 064012 (2005). [CrossRef] [PubMed]
  19. E. Y. Lukianova-Hleb, D. S. Wagner, M. K. Brenner, and D. O. Lapotko, “Cell-specific transmembrane injection of molecular cargo with gold nanoparticle-generated transient plasmonic nanobubbles,” Biomaterials33(21), 5441–5450 (2012). [CrossRef] [PubMed]
  20. K. Sankaranarayanan, S. Radhakrishnan, S. Kanagaraj, R. Rajendran, S. Shahid, P. Kathirvel, V. Sundaresan, V. K. Udayakumar, R. Ramachandran, and R. Sundararajan, “Effect of Irreversible electroporation on cell proliferation in fibroblasts,” Proceedings of the ESA Annual Meeting on Electrostatics (2011), pp. 1–8.
  21. P. J. Canatella, J. F. Karr, J. A. Petros, and M. R. Prausnitz, “Quantitative study of electroporation-mediated molecular uptake and cell viability,” Biophys. J.80(2), 755–764 (2001). [CrossRef] [PubMed]
  22. O. C. Farokhzad and R. Langer, “Impact of nanotechnology on drug delivery,” ACS Nano3(1), 16–20 (2009). [CrossRef] [PubMed]
  23. E. Y. Lukianova-Hleb, A. Belyanin, S. Kashinath, X. Wu, and D. O. Lapotko, “Plasmonic nanobubble-enhanced endosomal escape processes for selective and guided intracellular delivery of chemotherapy to drug-resistant cancer cells,” Biomaterials33(6), 1821–1826 (2012). [CrossRef] [PubMed]
  24. D. Pissuwan, S. M. Valenzuela, and M. B. Cortie, “Therapeutic possibilities of plasmonically heated gold nanoparticles,” Trends Biotechnol.24(2), 62–67 (2006). [CrossRef] [PubMed]
  25. D. Lapotko, E. Lukianova, M. Potapnev, O. Aleinikova, and A. Oraevsky, “Method of laser activated nano-thermolysis for elimination of tumor cells,” Cancer Lett.239(1), 36–45 (2006). [CrossRef] [PubMed]
  26. R. R. Letfullin, C. Joenathan, T. F. George, and V. P. Zharov, “Laser-induced explosion of gold nanoparticles: potential role for nanophotothermolysis of cancer,” Nanomedicine (Lond)1(4), 473–480 (2006). [CrossRef] [PubMed]
  27. D. O. Lapotko, E. Y. Lukianova, and A. A. Oraevsky, “Selective laser nano-thermolysis of human leukemia cells with microbubbles generated around clusters of gold nanoparticles,” Lasers Surg. Med.38(6), 631–642 (2006). [CrossRef] [PubMed]
  28. S. Link and M. A. El-Sayed, “Spectral Properties and Relaxation Dynamics of Surface Plasmon Electronic Oscillations in Gold and Silver Nanodots and Nanorods,” J. Phys. Chem. B103(40), 8410–8426 (1999). [CrossRef]
  29. S. Eustis and M. A. el-Sayed, “Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes,” Chem. Soc. Rev.35(3), 209–217 (2006). [CrossRef] [PubMed]
  30. P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, “Au nanoparticles target cancer,” Nano Today2(1), 18–29 (2007). [CrossRef]
  31. P. M. Tiwari, K. Vig, V. A. Dennis, and S. R. Singh, “Functionalized gold nanoparticles and their biomedical applications,” J. Nanomater.1(1), 31–63 (2011). [CrossRef]
  32. E. Y. Lukianova-Hleb, A. P. Samaniego, J. Wen, L. S. Metelitsa, C. C. Chang, and D. O. Lapotko, “Selective gene transfection of individual cells in vitro with plasmonic nanobubbles,” J. Control. Release152(2), 286–293 (2011). [CrossRef] [PubMed]
  33. C. Yao, X. Qu, Z. Zhang, G. Hüttmann, and R. Rahmanzadeh, “Influence of laser parameters on nanoparticle-induced membrane permeabilization,” J. Biomed. Opt.14(5), 054034 (2009). [CrossRef] [PubMed]
  34. A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D Appl. Phys.38(15), 2543–2555 (2005). [CrossRef]
  35. S. Inasawa, M. Sugiyama, and Y. Yamaguchi, “Laser-induced shape transformation of gold nanoparticles below the melting point: the effect of surface melting,” J. Phys. Chem. B109(8), 3104–3111 (2005). [CrossRef] [PubMed]
  36. A. Takami, H. Kurita, and S. Koda, “Laser-induced size reduction of noble metal particles,” J. Phys. Chem. B103(8), 1226–1232 (1999). [CrossRef]
  37. N. M. Schaeublin, L. K. Braydich-Stolle, A. M. Schrand, J. M. Miller, J. Hutchison, J. J. Schlager, and S. M. Hussain, “Surface charge of gold nanoparticles mediates mechanism of toxicity,” Nanoscale3(2), 410–420 (2011). [CrossRef] [PubMed]
  38. A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B81(8), 1015–1047 (2005). [CrossRef]
  39. É. Boulais, R. Lachaine, and M. Meunier, “Plasma mediated off-resonance plasmonic enhanced ultrafast laser-induced nanocavitation,” Nano Lett.12(9), 4763–4769 (2012). [CrossRef] [PubMed]
  40. A. Vogel and V. Venugopalan, “Mechanisms of pulsed laser ablation of biological tissues,” Chem. Rev.103(2), 577–644 (2003). [CrossRef] [PubMed]
  41. E. Y. Lukianova-Hleb, Y. Hu, L. Latterini, L. Tarpani, S. Lee, R. A. Drezek, J. H. Hafner, and D. O. Lapotko, “Plasmonic nanobubbles as transient vapor nanobubbles generated around plasmonic nanoparticles,” ACS Nano4(4), 2109–2123 (2010). [CrossRef] [PubMed]
  42. E. Y. Lukianova-Hleb, E. Y. Hanna, J. H. Hafner, and D. O. Lapotko, “Tunable plasmonic nanobubbles for cell theranostics,” Nanotechnology21(8), 085102 (2010). [CrossRef] [PubMed]
  43. M. Kitz, S. Preisser, A. Wetterwald, M. Jaeger, G. N. Thalmann, and M. Frenz, “Vapor bubble generation around gold nano-particles and its application to damaging of cells,” Biomed. Opt. Express2(2), 291–304 (2011). [CrossRef] [PubMed]
  44. E. Y. Lukianova-Hleb, C. Santiago, D. S. Wagner, J. H. Hafner, and D. O. Lapotko, “Generation and detection of plasmonic nanobubbles in zebrafish,” Nanotechnology21(22), 225102 (2010). [CrossRef] [PubMed]
  45. R. Lachaine, E. Boulais, E. Bourbeau, and M. Meunier, “Effect of pulse duration on plasmonic enhanced ultrafast laser-induced bubble generation in water,” Appl. Phys., A Mater. Sci. Process.2012(Sept.) 1–4 (2012).
  46. V. K. Pustovalov, A. S. Smetannikov, and V. P. Zharov, “Photothermal and accompanied phenomena of selective nanophotothermolysis with gold nanoparticles and laser pulses,” Laser Phys. Lett.5(11), 775–792 (2008). [CrossRef]
  47. O. Ekici, R. K. Harrison, N. J. Durr, D. S. Eversole, M. Lee, and A. Ben-Yakar, “Thermal analysis of gold nanorods heated with femtosecond laser pulses,” J. Phys. D Appl. Phys.41(18), 185501 (2008). [CrossRef] [PubMed]
  48. A. V. Nikolskaya, V. P. Nikolski, and I. R. Efimov, “Gene printer: laser-scanning targeted transfection of cultured cardiac neonatal rat cells,” Cell Commun. Adhes.13(4), 217–222 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited