OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 4, Iss. 4 — Apr. 1, 2013
  • pp: 548–558

Two-peaked 5-ALA-induced PpIX fluorescence emission spectrum distinguishes glioblastomas from low grade gliomas and infiltrative component of glioblastomas

Bruno Montcel, Laurent Mahieu-Williame, Xavier Armoiry, David Meyronet, and Jacques Guyotat  »View Author Affiliations


Biomedical Optics Express, Vol. 4, Issue 4, pp. 548-558 (2013)
http://dx.doi.org/10.1364/BOE.4.000548


View Full Text Article

Enhanced HTML    Acrobat PDF (1697 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

5-ALA-induced protoporphyrin IX (PpIX) fluorescence enables to guiding in intra-operative surgical glioma resection. However at present, it has yet to be shown that this method is able to identify infiltrative component of glioma. In extracted tumor tissues we measured a two-peaked emission in low grade gliomas and in the infiltrative component of glioblastomas due to multiple photochemical states of PpIX. The second emission peak appearing at 620 nm (shifted by 14 nm from the main peak at 634 nm) limits the sensibility of current methods to measured PpIX concentration. We propose new measured parameters, by taking into consideration the two-peaked emission, to overcome these limitations in sensitivity. These parameters clearly distinguish the solid component of glioblastomas from low grade gliomas and infiltrative component of glioblastomas.

© 2013 OSA

OCIS Codes
(000.1430) General : Biology and medicine
(170.4580) Medical optics and biotechnology : Optical diagnostics for medicine
(170.6280) Medical optics and biotechnology : Spectroscopy, fluorescence and luminescence
(170.6510) Medical optics and biotechnology : Spectroscopy, tissue diagnostics

ToC Category:
Optics in Cancer Research

History
Original Manuscript: January 2, 2013
Revised Manuscript: February 28, 2013
Manuscript Accepted: March 8, 2013
Published: March 13, 2013

Citation
Bruno Montcel, Laurent Mahieu-Williame, Xavier Armoiry, David Meyronet, and Jacques Guyotat, "Two-peaked 5-ALA-induced PpIX fluorescence emission spectrum distinguishes glioblastomas from low grade gliomas and infiltrative component of glioblastomas," Biomed. Opt. Express 4, 548-558 (2013)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-4-4-548


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. Weissleder and M. J. Pittet, “Imaging in the era of molecular oncology,” Nature452(7187), 580–589 (2008). [CrossRef] [PubMed]
  2. P. A. Valdés, F. Leblond, A. Kim, B. T. Harris, B. C. Wilson, X. Fan, T. D. Tosteson, A. Hartov, S. Ji, K. Erkmen, N. E. Simmons, K. D. Paulsen, and D. W. Roberts, “Quantitative fluorescence in intracranial tumor: implications for ALA-induced PpIX as an intraoperative biomarker,” J. Neurosurg.115(1), 11–17 (2011). [CrossRef] [PubMed]
  3. S. Utsuki, H. Oka, S. Sato, S. Suzuki, S. Shimizu, S. Tanaka, and K. Fujii, “Possibility of using laser spectroscopy for the intraoperative detection of nonfluorescing brain tumors and the boundaries of brain tumor infiltrates,” J. Neurosurg.104(4), 618–620 (2006). [CrossRef] [PubMed]
  4. P. A. Valdés, A. Kim, M. Brantsch, C. Niu, Z. B. Moses, T. D. Tosteson, B. C. Wilson, K. D. Paulsen, D. W. Roberts, and B. T. Harris, “δ-aminolevulinic acid-induced protoporphyrin IX concentration correlates with histopathologic markers of malignancy in human gliomas: the need for quantitative fluorescence-guided resection to identify regions of increasing malignancy,” Neuro-oncol.13(8), 846–856 (2011). [CrossRef] [PubMed]
  5. W. Stummer, U. Pichlmeier, T. Meinel, O. D. Wiestler, F. Zanella, H. J. Reulen, and ALA-Glioma Study Group, “Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial,” Lancet Oncol.7(5), 392–401 (2006). [CrossRef] [PubMed]
  6. N. Haj-Hosseini, J. Richter, S. Andersson-Engels, and K. Wårdell, “Optical touch pointer for fluorescence guided glioblastoma resection using 5-aminolevulinic acid,” Lasers Surg. Med.42(1), 9–14 (2010). [CrossRef] [PubMed]
  7. A. Kim, M. Khurana, Y. Moriyama, and B. C. Wilson, “Quantification of in vivo fluorescence decoupled from the effects of tissue optical properties using fiber-optic spectroscopy measurements,” J. Biomed. Opt.15(6), 067006 (2010). [CrossRef] [PubMed]
  8. T. B. Melø and G. Reisaeter, “The physicochemical state of protoporphyrin IX in aqueous solution investigated by fluorescence and light scattering,” Biophys. Chem.25(1), 99–104 (1986). [CrossRef] [PubMed]
  9. G. I. Lozovaya, Z. Masinovsky, and A. A. Sivash, “Protoporphyrin IX as a possible ancient photosensitizer: spectral and photochemical studies,” Orig. Life Evol. Biosph.20(3-4), 321–330 (1990). [CrossRef]
  10. T. Ando, E. Kobayashi, H. Liao, T. Maruyama, Y. Muragaki, H. Iseki, O. Kubo, and I. Sakuma, “Precise comparison of protoporphyrin IX fluorescence spectra with pathological results for brain tumor tissue identification,” Brain Tumor Pathol.28(1), 43–51 (2011). [CrossRef] [PubMed]
  11. P. A. Valdés, A. Kim, F. Leblond, O. M. Conde, B. T. Harris, K. D. Paulsen, B. C. Wilson, and D. W. Roberts, “Combined fluorescence and reflectance spectroscopy for in vivo quantification of cancer biomarkers in low- and high-grade glioma surgery,” J. Biomed. Opt.16(11), 116007 (2011). [CrossRef] [PubMed]
  12. J. S. Dysart and M. S. Patterson, “Photobleaching kinetics, photoproduct formation, and dose estimation during ALA induced PpIX PDT of MLL cells under well oxygenated and hypoxic conditions,” Photochem. Photobiol. Sci.5(1), 73–81 (2006). [CrossRef] [PubMed]
  13. A. Johansson, G. Palte, O. Schnell, J.-C. Tonn, J. Herms, and H. Stepp, “5-Aminolevulinic acid-induced protoporphyrin IX levels in tissue of human malignant brain tumors,” Photochem. Photobiol.86(6), 1373–1378 (2010). [CrossRef] [PubMed]
  14. J. Qin and R. Lu, “Measurement of the absorption and scattering properties of turbid liquid foods using hyperspectral imaging,” Appl. Spectrosc.61(4), 388–396 (2007). [CrossRef] [PubMed]
  15. M. B. Ericson, S. Grapengiesser, F. Gudmundson, A. M. Wennberg, O. Larkö, J. Moan, and A. Rosén, “A spectroscopic study of the photobleaching of protoporphyrin IX in solution,” Lasers Med. Sci.18(1), 56–62 (2003). [CrossRef] [PubMed]
  16. G. A. Wagnières, W. M. Star, and B. C. Wilson, “In vivo fluorescence spectroscopy and imaging for oncological applications,” Photochem. Photobiol.68(5), 603–632 (1998). [PubMed]
  17. N. Ramanujam, “Fluorescence spectroscopy of neoplastic and non-neoplastic tissues,” Neoplasia2(1/2), 89–117 (2000). [CrossRef] [PubMed]
  18. A. Ziegler, M. von Kienlin, M. Décorps, and C. Rémy, “High glycolytic activity in rat glioma demonstrated in vivo by correlation peak 1H magnetic resonance imaging,” Cancer Res.61(14), 5595–5600 (2001). [PubMed]
  19. B. C. Wilson, M. Olivo, and G. Singh, “Subcellular localization of Photofrin and aminolevulinic acid and photodynamic cross-resistance in vitro in radiation-induced fibrosarcoma cells sensitive or resistant to photofrin-mediated photodynamic therapy,” Photochem. Photobiol.65(1), 166–176 (1997). [CrossRef] [PubMed]
  20. S. M. Wu, Q. G. Ren, M. O. Zhou, Q. Peng, and J. Y. Chen, “Protoporphyrin IX production and its photodynamic effects on glioma cells, neuroblastoma cells and normal cerebellar granule cells in vitro with 5-aminolevulinic acid and its hexylester,” Cancer Lett.200(2), 123–131 (2003). [CrossRef] [PubMed]
  21. E. G. Mik, J. Stap, M. Sinaasappel, J. F. Beek, J. A. Aten, T. G. van Leeuwen, and C. Ince, “Mitochondrial PO2 measured by delayed fluorescence of endogenous protoporphyrin IX,” Nat. Methods3(11), 939–945 (2006). [CrossRef] [PubMed]
  22. D. Arosio, F. Ricci, L. Marchetti, R. Gualdani, L. Albertazzi, and F. Beltram, “Simultaneous intracellular chloride and pH measurements using a GFP-based sensor,” Nat. Methods7(7), 516–518 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited