OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 4, Iss. 5 — May. 1, 2013
  • pp: 680–695

Combined reflectance confocal microscopy/optical coherence tomography imaging for skin burn assessment

Nicusor Iftimia, R. Daniel Ferguson, Mircea Mujat, Ankit H. Patel, Ellen Ziyi Zhang, William Fox, and Milind Rajadhyaksha  »View Author Affiliations


Biomedical Optics Express, Vol. 4, Issue 5, pp. 680-695 (2013)
http://dx.doi.org/10.1364/BOE.4.000680


View Full Text Article

Enhanced HTML    Acrobat PDF (5954 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A combined high-resolution reflectance confocal microscopy (RCM)/optical coherence tomography (OCT) instrument for assessing skin burn gravity has been built and tested. This instruments allows for visualizing skin intracellular details with submicron resolution in the RCM mode and morphological and birefringence modifications to depths on the order of 1.2 mm in the OCT mode. Preliminary testing of the dual modality imaging approach has been performed on the skin of volunteers with some burn scars and on normal and thermally-injured Epiderm FTTM skin constructs. The initial results show that these two optical technologies have complementary capabilities that can offer the clinician a set of clinically comprehensive parameters: OCT helps to visualize deeper burn injuries and possibly quantify collagen destruction by measuring skin birefringence, while RCM provides submicron details of the integrity of the epidermal layer and identifies the presence of the superficial blood flow in the upper dermis. Therefore, the combination of these two technologies within the same instrument may provide a more comprehensive set of parameters that may help clinicians to more objectively and nonivasively assess burn injury gravity by determining tissue structural integrity and viability.

© 2013 OSA

OCIS Codes
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology
(170.4580) Medical optics and biotechnology : Optical diagnostics for medicine
(180.1790) Microscopy : Confocal microscopy
(180.1655) Microscopy : Coherence tomography
(170.6935) Medical optics and biotechnology : Tissue characterization

ToC Category:
Multimodal Imaging

History
Original Manuscript: January 29, 2013
Revised Manuscript: March 13, 2013
Manuscript Accepted: March 18, 2013
Published: April 8, 2013

Citation
Nicusor Iftimia, R. Daniel Ferguson, Mircea Mujat, Ankit H. Patel, Ellen Ziyi Zhang, William Fox, and Milind Rajadhyaksha, "Combined reflectance confocal microscopy/optical coherence tomography imaging for skin burn assessment," Biomed. Opt. Express 4, 680-695 (2013)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-4-5-680


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Burn incidence fact sheet (American Burn Association 2011). http://www.ameriburn.org/resources_factsheet.php
  2. P. A. Brigham and E. McLoughlin, “Burn incidence and medical care use in the United States: estimates, trends, and data sources,” J. Burn Care Rehabil.17(2), 95–107 (1996). [CrossRef] [PubMed]
  3. R. Walls, J. J. Ratey, and R. I. Simon, Rosen's Emergency Medicine: Expert Consult Premium Edition - Enhanced Online Features and Print (Rosen's Emergency Medicine: Concepts & Clinical Practice (2v.)) (Mosby, 2009).
  4. D. Church, S. Elsayed, O. Reid, B. Winston, and R. Lindsay, “Burn wound infections,” Clin. Microbiol. Rev.19(2), 403–434 (2006). [CrossRef] [PubMed]
  5. M. S. Arons, “Burn wound infection—a review,” Conn. Med.29(10), 718–722 (1965). [PubMed]
  6. N. Agnihotri, V. Gupta, and R. M. Joshi, “Aerobic bacterial isolates from burn wound infections and their antibiograms—a five-year study,” Burns30(3), 241–243 (2004). [CrossRef] [PubMed]
  7. D. J. Dries, “Management of burn injuries—recent developments in resuscitation, infection control and outcomes research,” Scand. J. Trauma Resusc. Emerg. Med.17(1), 14–27 (2009). [CrossRef] [PubMed]
  8. R. M. Johnson and R. Richard, “Partial-thickness burns: identification and management,” Adv. Skin Wound Care16(4), 178–187 (2003). [CrossRef] [PubMed]
  9. B. S. Atiyeh, S. W. Gunn, and S. N. Hayek, “State of the art in burn treatment,” World J. Surg.29(2), 131–148 (2005). [CrossRef] [PubMed]
  10. A. M. Watts, M. P. Tyler, M. E. Perry, A. H. Roberts, and D. A. McGrouther, “Burn depth and its histological measurement,” Burns27(2), 154–160 (2001). [CrossRef] [PubMed]
  11. A. C. Roth, J. C. Reid, C. L. Puckett, and M. J. Concannon, “Digital images in the diagnosis of wound healing problems,” Plast. Reconstr. Surg.103(2), 483–486 (1999). [CrossRef] [PubMed]
  12. O. C. Jones, D. I. Wilson, and S. Andrews, “The reliability of digital images when used to assess burn wounds,” J. Telemed. Telecare9(Supplement 1), 22–24 (2003). [CrossRef] [PubMed]
  13. L. Roa, T. Gómez-Cía, B. Acha, and C. Serrano, “Digital imaging in remote diagnosis of burns,” Burns25(7), 617–623 (1999). [CrossRef] [PubMed]
  14. Z. B. Niazi, T. J. Essex, R. Papini, D. Scott, N. R. McLean, and M. J. Black, “New laser Doppler scanner, a valuable adjunct in burn depth assessment,” Burns19(6), 485–489 (1993). [CrossRef] [PubMed]
  15. M. G. Sowa, L. Leonardi, J. R. Payette, J. S. Fish, and H. H. Mantsch, “Near infrared spectroscopic assessment of hemodynamic changes in the early post-burn period,” Burns27(3), 241–249 (2001). [CrossRef] [PubMed]
  16. L. Leonardi, M. G. Sowa, J. R. Payette, and H. H. Mantsch, “Near-infrared spectroscopy and imaging: a new approach to assess burn injuries,” Am. Clin. Lab.19(8), 20–22 (2000). [PubMed]
  17. J. M. Still, E. J. Law, K. G. Klavuhn, T. C. Island, and J. Z. Holtz, “Diagnosis of burn depth using laser-induced indocyanine green fluorescence: a preliminary clinical trial,” Burns27(4), 364–371 (2001). [CrossRef] [PubMed]
  18. J. Micheels, B. Aisbjorn, and B. Sorensen, “Laser doppler flowmetry. A new non-invasive measurement of microcirculation in intensive care?” Resuscitation12(1), 31–39 (1984). [CrossRef] [PubMed]
  19. D. H. Park, J. W. Hwang, K. S. Jang, D. G. Han, K. Y. Ahn, and B. S. Baik, “Use of laser Doppler flowmetry for estimation of the depth of burns,” Plast. Reconstr. Surg.101(6), 1516–1523 (1998). [CrossRef] [PubMed]
  20. A. J. Holland, H. C. Martin, and D. T. Cass, “Laser Doppler imaging prediction of burn wound outcome in children,” Burns28(1), 11–17 (2002). [CrossRef] [PubMed]
  21. T. J. OʼReilly, R. J. Spence, R. M. Taylor, and J. J. Scheulen, “Laser Doppler flowmetry evaluation of burn wound depth,” J. Burn Care Rehabil.10(1), 1–6 (1989). [CrossRef] [PubMed]
  22. L. Atiles, W. Mileski, G. Purdue, J. Hunt, and C. Baxter, “Laser Doppler flowmetry in burn wounds,” J. Burn Care Rehabil.16(4), 388–393 (1995). [CrossRef] [PubMed]
  23. M. A. Altintas, A. A. Altintas, K. Knobloch, M. Guggenheim, C. J. Zweifel, and P. M. Vogt, “Differentiation of superficial-partial vs. deep-partial thickness burn injuries in vivo by confocal-laser-scanning microscopy,” Burns35(1), 80–86 (2009). [CrossRef] [PubMed]
  24. D. Terhorst, A. Maltusch, E. Stockfleth, S. Lange-Asschenfeldt, W. Sterry, M. Ulrich, and B. Lange-Asschenfeldt, “Reflectance confocal microscopy for the evaluation of acute epidermal wound healing,” Wound Repair Regen.19(6), 671–679 (2011). [CrossRef] [PubMed]
  25. Q. H. Le, W. T. Wang, J. X. Hong, X. H. Sun, T. Y. Zheng, W. Q. Zhu, and J. J. Xu, “An in vivo confocal microscopy and impression cytology analysis of goblet cells in patients with chemical burns,” Invest. Ophthalmol. Vis. Sci.51(3), 1397–1400 (2010). [CrossRef] [PubMed]
  26. S. Jiao, W. Yu, G. Stoica, and L. V. Wang, “Contrast mechanisms in polarization-sensitive Mueller-matrix optical coherence tomography and application in burn imaging,” Appl. Opt.42(25), 5191–5197 (2003). [CrossRef] [PubMed]
  27. M. C. Pierce, R. L. Sheridan, B. Hyle Park, B. Cense, and J. F. de Boer, “Collagen denaturation can be quantified in burned human skin using polarization-sensitive optical coherence tomography,” Burns30(6), 511–517 (2004). [CrossRef] [PubMed]
  28. S. M. Srinivas, J. F. de Boer, H. Park, K. Keikhanzadeh, H. E. Huang, J. Zhang, W. Q. Jung, Z. Chen, and J. S. Nelson, “Determination of burn depth by polarization-sensitive optical coherence tomography,” J. Biomed. Opt.9(1), 207–212 (2004). [CrossRef] [PubMed]
  29. M. Todorović, S. Jiao, J. Ai, D. Pereda-Cubián, G. Stoica, and L. V. Wang, “In vivo burn imaging using Mueller optical coherence tomography,” Opt. Express16(14), 10279–10284 (2008). [CrossRef] [PubMed]
  30. K. H. Kim, M. C. Pierce, G. Maguluri, B. H. Park, S. J. Yoon, M. Lydon, R. Sheridan, and J. F. de Boer, “In vivo imaging of human burn injuries with polarization-sensitive optical coherence tomography,” J. Biomed. Opt.17(6), 066012 (2012). [CrossRef] [PubMed]
  31. A. T. Yeh, B. Kao, W. G. Jung, Z. Chen, J. S. Nelson, and B. J. Tromberg, “Imaging wound healing using optical coherence tomography and multiphoton microscopy in an in vitro skin-equivalent tissue model,” J. Biomed. Opt.9(2), 248–253 (2004). [CrossRef] [PubMed]
  32. D. H. Park, J. W. Hwang, K. S. Jang, D. G. Han, K. Y. Ahn, and B. S. Baik, “Use of laser Doppler flowmetry for estimation of the depth of burns,” Plast. Reconstr. Surg.101(6), 1516–1523 (1998). [CrossRef] [PubMed]
  33. E. J. Droog, W. Steenbergen, and F. Sjöberg, “Measurement of depth of burns by laser Doppler perfusion imaging,” Burns27(6), 561–568 (2001). [CrossRef] [PubMed]
  34. A. J. Holland, H. C. Martin, and D. T. Cass, “Laser Doppler imaging prediction of burn wound outcome in children,” Burns28(1), 11–17 (2002). [CrossRef] [PubMed]
  35. L. Atiles, W. Mileski, G. Purdue, J. Hunt, and C. Baxter, “Laser Doppler flowmetry in burn wounds,” J. Burn Care Rehabil.16(4), 388–393 (1995). [CrossRef] [PubMed]
  36. S. A. Pape, C. A. Skouras, and P. O. Byrne, “An audit of the use of laser Doppler imaging (LDI) in the assessment of burns of intermediate depth,” Burns27(3), 233–239 (2001). [CrossRef] [PubMed]
  37. V. J. Anselmo and B. E. Zawacki, “Multispectral photographic analysis. A new quantitative tool to assist in the early diagnosis of thermal burn depth,” Ann. Biomed. Eng.5(2), 179–193 (1977). [CrossRef] [PubMed]
  38. L. T. Vo, P. Anikijenko, W. J. McLaren, P. M. Delaney, D. H. Barkla, and R. G. King, “Autofluorescence of skin burns detected by fiber-optic confocal imaging: evidence that cool water treatment limits progressive thermal damage in anesthetized hairless mice,” J. Trauma51(1), 98–104 (2001). [CrossRef] [PubMed]
  39. S. M. Milner, S. Bhat, S. Gulati, G. Gherardini, C. E. Smith, and R. J. Bick, “Observations on the microcirculation of the human burn wound using orthogonal polarization spectral imaging,” Burns31(3), 316–319 (2005). [CrossRef] [PubMed]
  40. B. W. Graf and S. A. Boppart, “Multimodal in vivo skin imaging with integrated optical coherence and multiphoton microscopy,” IEEE J. Sel. Top. Quantum Electron.18(4), 1280–1286 (2012). [CrossRef]
  41. http://www.millipore.com/catalogue/item/ct02?cid=bios-x-goog-1007-9999-rc
  42. J. Thomsen, N. Bendsoe, K. Svanberg, S. Andersson-Engels, T. M. Jorgensen, L. Thrane, H. E. Larsen, F. Pedersen, and P. E. Andersen, “Optical Doppler tomography for monitoring vascularization during photodynamic therapy of skin cancer lesions,” Proc. SPIE6991, 699118, 699118-7 (2008). [CrossRef]
  43. Y. Zhao, Z. Chen, C. Saxer, S. Xiang, J. F. de Boer, and J. S. Nelson, “Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity,” Opt. Lett.25(2), 114–116 (2000). [CrossRef] [PubMed]
  44. B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med.15(10), 1219–1223 (2009). [CrossRef] [PubMed]
  45. L. An, J. Qin, and R. K. Wang, “Ultrahigh sensitive optical microangiography for in vivo imaging of microcirculations within human skin tissue beds,” Opt. Express18(8), 8220–8228 (2010). [CrossRef] [PubMed]
  46. J. Qin, J. Jiang, L. An, D. Gareau, and R. K. Wang, “In vivo volumetric imaging of microcirculation within human skin under psoriatic conditions using optical microangiography,” Lasers Surg. Med.43(2), 122–129 (2011). [CrossRef] [PubMed]
  47. E. Z. Zhang and B. J. Vakoc, “Polarimetry noise in fiber-based optical coherence tomography instrumentation,” Opt. Express19(18), 16830–16842 (2011). [CrossRef] [PubMed]
  48. D. Stifter, E. Leiss-Holzinger, Z. Major, B. Baumann, M. Pircher, E. Götzinger, C. K. Hitzenberger, and B. Heise, “Dynamic optical studies in materials testing with spectral-domain polarization-sensitive optical coherence tomography,” Opt. Express18(25), 25712–25725 (2010). [CrossRef] [PubMed]
  49. E. Z. Zhang, W. Y. Oh, M. L. Villiger, L. Chen, B. E. Bouma, and B. J. Vakoc, “Numerical compensation of system polarization mode dispersion in polarization-sensitive optical coherence tomography,” Opt. Express21(1), 1163–1180 (2013). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited