OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 4, Iss. 6 — Jun. 1, 2013
  • pp: 967–977

Direct visualization of changes of lymphatic function and drainage pathways in lymph node metastasis of B16F10 melanoma using near-infrared fluorescence imaging

Sunkuk Kwon, Germaine D. Agollah, Grace Wu, Wenyaw Chan, and Eva M. Sevick-Muraca  »View Author Affiliations


Biomedical Optics Express, Vol. 4, Issue 6, pp. 967-977 (2013)
http://dx.doi.org/10.1364/BOE.4.000967


View Full Text Article

Enhanced HTML    Acrobat PDF (1462 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The lymphatic system provides an initial route for cancer cell dissemination in many cancers including melanoma. However, it is largely unknown how the lymphatic system changes during tumor progression due in part to the lack of imaging techniques currently available. In this study, we non-invasively imaged changes of lymphatic function and drainage patterns using near-infrared fluorescence (NIRF) imaging. Dynamic NIRF imaging following intradermal injection of indocyanine green (ICG) was conducted in C57BL/6 mice prior to inoculation of B16F10 murine melanoma cells to the dorsal aspect of the left hindpaw for baseline data or directly to the popliteal lymph node (PLN) and until 21 days post-implantation (p.i.). A series of acquired fluorescent images were quantified to measure lymphatic contractile function. Computed tomography (CT) was also performed to measure the volume of tumor-draining lymph nodes (LNs). We observed significant reduction of lymphatic contractility from 7 days p.i. until 21 days p.i.. Altered lymphatic drainage patterns were also detected at 21 days p.i. in mice with tumor in the paw and at 11 days p.i. in mice with tumor in the PLN, due to lymphatic obstruction of normal lymphatic drainages caused by extensive tumor invasion of draining LNs. Since lymphatic function and architecture were progressively altered during tumor growth and metastasis, non-invasive NIRF imaging may provide a new method to stage disease. In addition, this novel technique can be used as a diagnostic method to non-invasively assess lymphatic response as mechanism of therapeutic action.

© 2013 OSA

OCIS Codes
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.4580) Medical optics and biotechnology : Optical diagnostics for medicine
(170.2655) Medical optics and biotechnology : Functional monitoring and imaging

ToC Category:
Optics in Cancer Research

History
Original Manuscript: April 24, 2013
Revised Manuscript: May 28, 2013
Manuscript Accepted: May 28, 2013
Published: May 30, 2013

Citation
Sunkuk Kwon, Germaine D. Agollah, Grace Wu, Wenyaw Chan, and Eva M. Sevick-Muraca, "Direct visualization of changes of lymphatic function and drainage pathways in lymph node metastasis of B16F10 melanoma using near-infrared fluorescence imaging," Biomed. Opt. Express 4, 967-977 (2013)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-4-6-967


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. A. Stacker, M. G. Achen, L. Jussila, M. E. Baldwin, and K. Alitalo, “Lymphangiogenesis and cancer metastasis,” Nat. Rev. Cancer2(8), 573–583 (2002). [CrossRef] [PubMed]
  2. M. Rinderknecht and M. Detmar, “Tumor lymphangiogenesis and melanoma metastasis,” J. Cell. Physiol.216(2), 347–354 (2008). [CrossRef] [PubMed]
  3. R. F. Uren, R. Howman-Giles, D. K. Chung, and J. F. Thompson, “Metastatic occlusion of a lymphatic collecting vessel in a patient with cutaneous melanoma and clinically normal lymph nodes,” Clin. Nucl. Med.32(4), 312–313 (2007). [CrossRef] [PubMed]
  4. T. K. Lam, R. F. Uren, R. A. Scolyer, M. J. Quinn, K. F. Shannon, and J. F. Thompson, “False-negative sentinel node biopsy because of obstruction of lymphatics by metastatic melanoma: the value of ultrasound in conjunction with preoperative lymphoscintigraphy,” Melanoma Res.19(2), 94–99 (2009). [CrossRef] [PubMed]
  5. S. Kwon and E. M. Sevick-Muraca, “Functional lymphatic imaging in tumor-bearing mice,” J. Immunol. Methods360(1-2), 167–172 (2010). [CrossRef] [PubMed]
  6. S. S. Dadras, B. Lange-Asschenfeldt, P. Velasco, L. Nguyen, A. Vora, A. Muzikansky, K. Jahnke, A. Hauschild, S. Hirakawa, M. C. Mihm, and M. Detmar, “Tumor lymphangiogenesis predicts melanoma metastasis to sentinel lymph nodes,” Mod. Pathol.18(9), 1232–1242 (2005). [CrossRef] [PubMed]
  7. A. Alitalo and M. Detmar, “Interaction of tumor cells and lymphatic vessels in cancer progression,” Oncogene31(42), 4499–4508 (2012). [CrossRef] [PubMed]
  8. M. Skobe, L. M. Hamberg, T. Hawighorst, M. Schirner, G. L. Wolf, K. Alitalo, and M. Detmar, “Concurrent induction of lymphangiogenesis, angiogenesis, and macrophage recruitment by vascular endothelial growth factor-C in melanoma,” Am. J. Pathol.159(3), 893–903 (2001). [CrossRef] [PubMed]
  9. M. Skobe, T. Hawighorst, D. G. Jackson, R. Prevo, L. Janes, P. Velasco, L. Riccardi, K. Alitalo, K. Claffey, and M. Detmar, “Induction of tumor lymphangiogenesis by VEGF-C promotes breast cancer metastasis,” Nat. Med.7(2), 192–198 (2001). [CrossRef] [PubMed]
  10. M. Streit and M. Detmar, “Angiogenesis, lymphangiogenesis, and melanoma metastasis,” Oncogene22(20), 3172–3179 (2003). [CrossRef] [PubMed]
  11. J. Lin, A. S. Lalani, T. C. Harding, M. Gonzalez, W. W. Wu, B. Luan, G. H. Tu, K. Koprivnikar, M. J. VanRoey, Y. He, K. Alitalo, and K. Jooss, “Inhibition of lymphogenous metastasis using adeno-associated virus-mediated gene transfer of a soluble VEGFR-3 decoy receptor,” Cancer Res.65(15), 6901–6909 (2005). [CrossRef] [PubMed]
  12. N. Roberts, B. Kloos, M. Cassella, S. Podgrabinska, K. Persaud, Y. Wu, B. Pytowski, and M. Skobe, “Inhibition of VEGFR-3 activation with the antagonistic antibody more potently suppresses lymph node and distant metastases than inactivation of VEGFR-2,” Cancer Res.66(5), 2650–2657 (2006). [CrossRef] [PubMed]
  13. T. Hoshida, N. Isaka, J. Hagendoorn, E. di Tomaso, Y. L. Chen, B. Pytowski, D. Fukumura, T. P. Padera, and R. K. Jain, “Imaging steps of lymphatic metastasis reveals that vascular endothelial growth factor-C increases metastasis by increasing delivery of cancer cells to lymph nodes: therapeutic implications,” Cancer Res.66(16), 8065–8075 (2006). [CrossRef] [PubMed]
  14. Y. He, K. Kozaki, T. Karpanen, K. Koshikawa, S. Yla-Herttuala, T. Takahashi, and K. Alitalo, “Suppression of tumor lymphangiogenesis and lymph node metastasis by blocking vascular endothelial growth factor receptor 3 signaling,” J. Natl. Cancer Inst.94(11), 819–825 (2002). [CrossRef] [PubMed]
  15. M. I. Harrell, B. M. Iritani, and A. Ruddell, “Tumor-induced sentinel lymph node lymphangiogenesis and increased lymph flow precede melanoma metastasis,” Am. J. Pathol.170(2), 774–786 (2007). [CrossRef] [PubMed]
  16. S. Hirakawa, S. Kodama, R. Kunstfeld, K. Kajiya, L. F. Brown, and M. Detmar, “VEGF-A induces tumor and sentinel lymph node lymphangiogenesis and promotes lymphatic metastasis,” J. Exp. Med.201(7), 1089–1099 (2005). [CrossRef] [PubMed]
  17. R. C. Ji, “Lymph node lymphangiogenesis: a new concept for modulating tumor metastasis and inflammatory process,” Histol. Histopathol.24(3), 377–384 (2009). [PubMed]
  18. C. N. Qian, B. Berghuis, G. Tsarfaty, M. Bruch, E. J. Kort, J. Ditlev, I. Tsarfaty, E. Hudson, D. G. Jackson, D. Petillo, J. Chen, J. H. Resau, and B. T. Teh, “Preparing the ‘soil’: the primary tumor induces vasculature reorganization in the sentinel lymph node before the arrival of metastatic cancer cells,” Cancer Res.66(21), 10365–10376 (2006). [CrossRef] [PubMed]
  19. G. G. Van den Eynden, M. K. Vandenberghe, P. J. van Dam, C. G. Colpaert, P. van Dam, L. Y. Dirix, P. B. Vermeulen, and E. A. Van Marck, “Increased sentinel lymph node lymphangiogenesis is associated with nonsentinel axillary lymph node involvement in breast cancer patients with a positive sentinel node,” Clin. Cancer Res.13(18), 5391–5397 (2007). [CrossRef] [PubMed]
  20. S. T. Proulx, P. Luciani, S. Derzsi, M. Rinderknecht, V. Mumprecht, J. C. Leroux, and M. Detmar, “Quantitative imaging of lymphatic function with liposomal indocyanine green,” Cancer Res.70(18), 7053–7062 (2010). [CrossRef] [PubMed]
  21. S. Kwon and E. M. Sevick-Muraca, “Noninvasive quantitative imaging of lymph function in mice,” Lymphat. Res. Biol.5(4), 219–232 (2007). [CrossRef] [PubMed]
  22. S. Kwon and E. M. Sevick-Muraca, “Mouse phenotyping with near-infrared fluorescence lymphatic imaging,” Biomed. Opt. Express2(6), 1403–1411 (2011). [CrossRef] [PubMed]
  23. P. E. Lapinski, S. Kwon, B. A. Lubeck, J. E. Wilkinson, R. S. Srinivasan, E. Sevick-Muraca, and P. D. King, “RASA1 maintains the lymphatic vasculature in a quiescent functional state in mice,” J. Clin. Invest.122(2), 733–747 (2012). [CrossRef] [PubMed]
  24. E. M. Sevick-Muraca, R. Sharma, J. C. Rasmussen, M. V. Marshall, J. A. Wendt, H. Q. Pham, E. Bonefas, J. P. Houston, L. Sampath, K. E. Adams, D. K. Blanchard, R. E. Fisher, S. B. Chiang, R. Elledge, and M. E. Mawad, “Imaging of lymph flow in breast cancer patients after microdose administration of a near-infrared fluorophore: feasibility study,” Radiology246(3), 734–741 (2008). [CrossRef] [PubMed]
  25. E. M. Sevick-Muraca, “Translation of near-infrared fluorescence imaging technologies: emerging clinical applications,” Annu. Rev. Med.63(1), 217–231 (2012). [CrossRef] [PubMed]
  26. E. A. Maus, I. C. Tan, J. C. Rasmussen, M. V. Marshall, C. E. Fife, L. A. Smith, R. Guilliod, and E. M. Sevick-Muraca, “Near-infrared fluorescence imaging of lymphatics in head and neck lymphedema,” Head Neck34(3), 448–453 (2012). [CrossRef] [PubMed]
  27. J. C. Rasmussen, S. Kwon, E. M. Sevick-Muraca, and J. N. Cormier, “The role of lymphatics in cancer as assessed by near-infrared fluorescence imaging,” Ann. Biomed. Eng.40(2), 408–421 (2012). [CrossRef] [PubMed]
  28. J. C. Rasmussen, I. C. Tan, M. V. Marshall, K. E. Adams, S. Kwon, C. E. Fife, E. A. Maus, L. A. Smith, K. R. Covington, and E. M. Sevick-Muraca, “Human lymphatic architecture and dynamic transport imaged using near-infrared fluorescence,” Transl. Oncol.3(6), 362–372 (2010). [PubMed]
  29. I. C. Tan, E. A. Maus, J. C. Rasmussen, M. V. Marshall, K. E. Adams, C. E. Fife, L. A. Smith, W. Chan, and E. M. Sevick-Muraca, “Assessment of lymphatic contractile function after manual lymphatic drainage using near-infrared fluorescence imaging,” Arch. Phys. Med. Rehabil.92(5), 756–764, e1 (2011). [CrossRef] [PubMed]
  30. S. S. Dadras, T. Paul, J. Bertoncini, L. F. Brown, A. Muzikansky, D. G. Jackson, U. Ellwanger, C. Garbe, M. C. Mihm, and M. Detmar, “Tumor lymphangiogenesis: a novel prognostic indicator for cutaneous melanoma metastasis and survival,” Am. J. Pathol.162(6), 1951–1960 (2003). [CrossRef] [PubMed]
  31. J. A. Leijte, I. M. van der Ploeg, R. A. Valdés Olmos, O. E. Nieweg, and S. Horenblas, “Visualization of tumor blockage and rerouting of lymphatic drainage in penile cancer patients by use of SPECT/CT,” J. Nucl. Med.50(3), 364–367 (2009). [CrossRef] [PubMed]
  32. J. Norman, C. W. Cruse, C. Espinosa, C. Cox, C. Berman, R. Clark, H. Saba, K. Wells, and D. Reintgen, “Redefinition of cutaneous lymphatic drainage with the use of lymphoscintigraphy for malignant melanoma,” Am. J. Surg.162(5), 432–437 (1991). [CrossRef] [PubMed]
  33. R. F. Uren, R. Howman-Giles, and J. F. Thompson, “Patterns of lymphatic drainage from the skin in patients with melanoma,” J. Nucl. Med.44(4), 570–582 (2003). [PubMed]
  34. K. Kawada, M. Sonoshita, H. Sakashita, A. Takabayashi, Y. Yamaoka, T. Manabe, K. Inaba, N. Minato, M. Oshima, and M. M. Taketo, “Pivotal role of CXCR3 in melanoma cell metastasis to lymph nodes,” Cancer Res.64(11), 4010–4017 (2004). [CrossRef] [PubMed]
  35. A. Ruddell, M. I. Harrell, M. Furuya, S. B. Kirschbaum, and B. M. Iritani, “B lymphocytes promote lymphogenous metastasis of lymphoma and melanoma,” Neoplasia13(8), 748–757 (2011). [PubMed]
  36. K. Nakaya, R. Mizuno, and T. Ohhashi, “B16-BL6 melanoma cells release inhibitory factor(s) of active pump activity in isolated lymph vessels,” Am. J. Physiol. Cell Physiol.281(6), C1812–C1818 (2001). [PubMed]
  37. J. E. Gershenwald and I. J. Fidler, “Cancer. Targeting lymphatic metastasis,” Science296(5574), 1811–1812 (2002). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited