OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 4, Iss. 7 — Jul. 1, 2013
  • pp: 1014–1030

Automated tissue characterization of in vivo atherosclerotic plaques by intravascular optical coherence tomography images

Giovanni Jacopo Ughi, Tom Adriaenssens, Peter Sinnaeve, Walter Desmet, and Jan D’hooge  »View Author Affiliations

Biomedical Optics Express, Vol. 4, Issue 7, pp. 1014-1030 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (7848 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Intravascular optical coherence tomography (IVOCT) is rapidly becoming the method of choice for the in vivo investigation of coronary artery disease. While IVOCT visualizes atherosclerotic plaques with a resolution <20µm, image analysis in terms of tissue composition is currently performed by a time-consuming manual procedure based on the qualitative interpretation of image features. We illustrate an algorithm for the automated and systematic characterization of IVOCT atherosclerotic tissue. The proposed method consists in a supervised classification of image pixels according to textural features combined with the estimated value of the optical attenuation coefficient. IVOCT images of 64 plaques, from 49 in vivo IVOCT data sets, constituted the algorithm’s training and testing data sets. Validation was obtained by comparing automated analysis results to the manual assessment of atherosclerotic plaques. An overall pixel-wise accuracy of 81.5% with a classification feasibility of 76.5% and per-class accuracy of 89.5%, 72.1% and 79.5% for fibrotic, calcified and lipid-rich tissue respectively, was found. Moreover, measured optical properties were in agreement with previous results reported in literature. As such, an algorithm for automated tissue characterization was developed and validated using in vivo human data, suggesting that it can be applied to clinical IVOCT data. This might be an important step towards the integration of IVOCT in cardiovascular research and routine clinical practice.

© 2013 OSA

OCIS Codes
(100.0100) Image processing : Image processing
(100.2960) Image processing : Image analysis
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology
(100.4995) Image processing : Pattern recognition, metrics
(170.6935) Medical optics and biotechnology : Tissue characterization

ToC Category:
Image Processing

Original Manuscript: February 13, 2013
Revised Manuscript: May 8, 2013
Manuscript Accepted: May 8, 2013
Published: June 4, 2013

Giovanni Jacopo Ughi, Tom Adriaenssens, Peter Sinnaeve, Walter Desmet, and Jan D’hooge, "Automated tissue characterization of in vivo atherosclerotic plaques by intravascular optical coherence tomography images," Biomed. Opt. Express 4, 1014-1030 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Farb, A. P. Burke, A. L. Tang, T. Y. Liang, P. Mannan, J. Smialek, and R. Virmani, “Coronary plaque erosion without rupture into a lipid core. A frequent cause of coronary thrombosis in sudden coronary death,” Circulation93(7), 1354–1363 (1996). [CrossRef] [PubMed]
  2. R. Virmani, A. P. Burke, F. D. Kolodgie, and A. Farb, “Pathology of the thin-cap fibroatheroma: a type of vulnerable plaque,” J. Interv. Cardiol.16(3), 267–272 (2003). [CrossRef] [PubMed]
  3. P. W. Serruys, H. E. Luijten, K. J. Beatt, R. Geuskens, P. J. de Feyter, M. van den Brand, J. H. Reiber, H. J. ten Katen, G. A. van Es, and P. G. Hugenholtz, “Incidence of restenosis after successful coronary angioplasty: a time-related phenomenon. A quantitative angiographic study in 342 consecutive patients at 1, 2, 3, and 4 months,” Circulation77(2), 361–371 (1988). [CrossRef] [PubMed]
  4. S. J. Kang, G. S. Mintz, D. W. Park, S. W. Lee, Y. H. Kim, C. Whan Lee, K. H. Han, J. J. Kim, S. W. Park, and S. J. Park, “Mechanisms of in-stent restenosis after drug-eluting stent implantation: intravascular ultrasound analysis,” Circ. Cardiovasc. Interv.4(1), 9–14 (2011). [CrossRef] [PubMed]
  5. A. C. Papayannis, A. R. Abdel-Karim, A. Mahmood, B. V. Rangan, L. B. Makke, S. Banerjee, and E. S. Brilakis, “Association of coronary lipid core plaque with intrastent thrombus formation: a near-infrared spectroscopy and optical coherence tomography study,” Catheter. Cardiovasc. Interv.81(3), 488–493 (2013). [CrossRef] [PubMed]
  6. I. Moussa, C. Di Mario, J. Moses, B. Reimers, L. Di Francesco, G. Martini, J. Tobis, and A. Colombo, “Coronary stenting after rotational atherectomy in calcified and complex lesions. Angiographic and clinical follow-up results,” Circulation96(1), 128–136 (1997). [CrossRef] [PubMed]
  7. A. Nair, B. D. Kuban, E. M. Tuzcu, P. Schoenhagen, S. E. Nissen, and D. G. Vince, “Coronary plaque classification with intravascular ultrasound radiofrequency data analysis,” Circulation106(17), 2200–2206 (2002). [CrossRef] [PubMed]
  8. M. A S. Cordeiro and J. A C. Lima, “Atherosclerotic plaque characterization by multidetector row computed tomography angiography,” J. Am. Coll. Cardiol.47(8Suppl), C40–C47 (2006). [CrossRef] [PubMed]
  9. I. K. Jang, B. E. Bouma, D. H. Kang, S. J. Park, S. W. Park, K. B. Seung, K. B. Choi, M. Shishkov, K. Schlendorf, E. Pomerantsev, S. L. Houser, H. T. Aretz, and G. J. Tearney, “Visualization of coronary atherosclerotic plaques in patients using optical coherence tomography: comparison with intravascular ultrasound,” J. Am. Coll. Cardiol.39(4), 604–609 (2002). [CrossRef] [PubMed]
  10. I. K. Jang, G. J. Tearney, B. MacNeill, M. Takano, F. Moselewski, N. Iftima, M. Shishkov, S. Houser, H. T. Aretz, E. F. Halpern, and B. E. Bouma, “In vivo characterization of coronary atherosclerotic plaque by use of optical coherence tomography,” Circulation111(12), 1551–1555 (2005). [CrossRef] [PubMed]
  11. H. Yabushita, B. E. Bouma, S. L. Houser, H. T. Aretz, I. K. Jang, K. H. Schlendorf, C. R. Kauffman, M. Shishkov, D. H. Kang, E. F. Halpern, and G. J. Tearney, “Characterization of human atherosclerosis by optical coherence tomography,” Circulation106(13), 1640–1645 (2002). [CrossRef] [PubMed]
  12. C. Xu, J. M. Schmitt, S. G. Carlier, and R. Virmani, “Characterization of atherosclerosis plaques by measuring both backscattering and attenuation coefficients in optical coherence tomography,” J. Biomed. Opt.13(3), 034003 (2008). [CrossRef] [PubMed]
  13. T. Kume, T. Akasaka, T. Kawamoto, N. Watanabe, E. Toyota, Y. Neishi, R. Sukmawan, Y. Sadahira, and K. Yoshida, “Assessment of coronary arterial plaque by optical coherence tomography,” Am. J. Cardiol.97(8), 1172–1175 (2006). [CrossRef] [PubMed]
  14. G. van Soest, T. Goderie, E. Regar, S. Koljenović, G. L. van Leenders, N. Gonzalo, S. van Noorden, T. Okamura, B. E. Bouma, G. J. Tearney, J. W. Oosterhuis, P. W. Serruys, and A. F. van der Steen, “Atherosclerotic tissue characterization in vivo by optical coherence tomography attenuation imaging,” J. Biomed. Opt.15(1), 011105 (2010). [CrossRef] [PubMed]
  15. Z. Wang, H. Kyono, H. G. Bezerra, H. Wang, M. Gargesha, C. Alraies, C. Xu, J. M. Schmitt, D. L. Wilson, M. A. Costa, and A. M. Rollins, “Semiautomatic segmentation and quantification of calcified plaques in intracoronary optical coherence tomography images,” J. Biomed. Opt.15(6), 061711 (2010). [CrossRef] [PubMed]
  16. G. J. Tearney, E. Regar, T. Akasaka, T. Adriaenssens, P. Barlis, H. G. Bezerra, B. Bouma, N. Bruining, J.- Cho, S. Chowdhary, M. A. Costa, R. de Silva, J. Dijkstra, C. Di Mario, D. Dudeck, E. Falk, M. D. Feldman, P. Fitzgerald, H. Garcia, N. Gonzalo, J. F. Granada, G. Guagliumi, N. R. Holm, Y. Honda, F. Ikeno, M. Kawasaki, J. Kochman, L. Koltowski, T. Kubo, T. Kume, H. Kyono, C. C. S. Lam, G. Lamouche, D. P. Lee, M. B. Leon, A. Maehara, O. Manfrini, G. S. Mintz, K. Mizuno, M.- Morel, S. Nadkarni, H. Okura, H. Otake, A. Pietrasik, F. Prati, L. Räber, M. D. Radu, J. Rieber, M. Riga, A. Rollins, M. Rosenberg, V. Sirbu, P. W. J. C. Serruys, K. Shimada, T. Shinke, J. Shite, E. Siegel, S. Sonada, M. Suter, S. Takarada, A. Tanaka, M. Terashima, T. Troels, S. Uemura, G. J. Ughi, H. M. M. van Beusekom, A. F. W. van der Steen, G.-A. van Es, G. van Soest, R. Virmani, S. Waxman, N. J. Weissman, G. Weisz, and International Working Group for Intravascular Optical Coherence Tomography (IWG-IVOCT), “Consensus standards for acquisition, measurement, and reporting of intravascular optical coherence tomography studies: a report from the International Working Group for Intravascular Optical Coherence Tomography Standardization and Validation,” J. Am. Coll. Cardiol.59(12), 1058–1072 (2012). [CrossRef] [PubMed]
  17. K. W. Gossage, T. S. Tkaczyk, J. J. Rodriguez, and J. K. Barton, “Texture analysis of optical coherence tomography images: feasibility for tissue classification,” J. Biomed. Opt.8(3), 570–575 (2003). [CrossRef] [PubMed]
  18. A. Otsu, “A threshold selection method from gray-level histograms,” IEEE Trans. Syst. Man Cybern.9(1), 62–66 (1979). [CrossRef]
  19. E. R. Dougherty, An Introduction to Morphological Image Processing (SPIE Optical Engineering Press, 1992).
  20. G. J. Ughi, T. Adriaenssens, K. Onsea, P. Kayaert, C. Dubois, P. Sinnaeve, M. Coosemans, W. Desmet, and J. D’hooge, “Automatic segmentation of in-vivo intra-coronary optical coherence tomography images to assess stent strut apposition and coverage,” Int. J. Cardiovasc. Imaging28(2), 229–241 (2012). [CrossRef] [PubMed]
  21. J. M. Schmitt, A. Knüttel, M. Yadlowsky, and M. A. Eckhaus, “Optical-coherence tomography of a dense tissue: statistics of attenuation and backscattering,” Phys. Med. Biol.39(10), 1705–1720 (1994). [CrossRef] [PubMed]
  22. J. M. Schmitt, A. Knüttel, and R. F. Bonner, “Measurement of optical properties of biological tissues by low-coherence reflectometry,” Appl. Opt.32(30), 6032–6042 (1993). [CrossRef] [PubMed]
  23. V. Tuchin, Tissue Optics (SPIE Optical Engineering Press, 2007).
  24. F. J. van der Meer, D. J. Faber, D. M. B. Sassoon, M. C. Aalders, G. Pasterkamp, and T. G. van Leeuwen, “Localized measurement of optical attenuation coefficients of atherosclerotic plaque constituents by quantitative optical coherence tomography,” IEEE Trans. Med. Imaging24(10), 1369–1376 (2005). [CrossRef] [PubMed]
  25. T. G. van Leeuwen, D. J. Faber, and M. C. Aalders, “Measurement of the axial point spread function in scattering media using single-mode fiber based optical coherence tomography,” IEEE J. Sel. Top. Quantum Electron.9(2), 227–233 (2003). [CrossRef]
  26. S. L. Jacques, D. Levitz, R. Samatham, D. S. Gareau, N. Choudhury, and F. Truffer, Light Scattering in Confocal Reflectance Microscopy (McGraw-Hill, 2009).
  27. F. J. van der Meer, D. J. Faber, J. Perrée, G. Pasterkamp, D. Baraznji Sassoon, and T. G. van Leeuwen, “Quantitative optical coherence tomography of arterial wall components,” Lasers Med. Sci.20(1), 45–51 (2005). [CrossRef] [PubMed]
  28. A. Haralick, K. Shanmugam, and I. Dinstein, “Texture features for image classification,” IEEE Trans. Syst. Man Cybern.3(6), 610–621 (1973). [CrossRef]
  29. R. W. Conners and C. A. Harlow, “A theoretical comparison of texture algorithms,” IEEE Trans. Pattern Anal. Mach. Intell.PAMI-2(3), 204–222 (1980). [CrossRef] [PubMed]
  30. D. A. Clausi, “An analysis of co-occurence texture statistics as a function of gray level quantization,” Can. J. Rem. Sens.28(1), 45–62 (2002). [CrossRef]
  31. L. Breiman, “Random Forests,” Mach. Learn.45(1), 5–32 (2001). [CrossRef]
  32. G. Biau, L. Devroye, and G. Lugosi, “Consistency of Random Forests and other averaging classifiers,” J. Mach. Learn. Res.9(1), 2015–2033 (2008).
  33. L. Breiman, “Consistency for a simple model of random forests,” UC Berkeley, Technical Report http://www.stat.berkeley.edu/~breiman/RandomForests/consistencyRFA.pdf (2004).
  34. Y. Lin and Y. Jeon, “Random Forests and adaptive nearest neighbours,” J. Am. Stat. Assoc.101(474), 578–590 (2006). [CrossRef]
  35. G. J. Ughi, T. Adriaenssens, M. Larsson, C. Dubois, P. R. Sinnaeve, M. Coosemans, W. Desmet, and J. D’hooge, “Automatic three-dimensional registration of intravascular optical coherence tomography images,” J. Biomed. Opt.17(2), 026005 (2012). [CrossRef] [PubMed]
  36. W. S. Rasband, “ImageJ,” U. S. National Institutes of Health, http://imagej.nih.gov/ij/ , Bethesda, Maryland, USA, 1997–2011.
  37. M. D. Abramoff, P. J. Magalhales, and S. J. Ram, “Image processing with ImageJ,” Biophotonics Int.11(7), 36–42 (2004).
  38. J. Shotton, J. Winn, C. Rother, and A. Criminisi, “TextoonBoost for image understanding: multi-class object recognition and segmentation by jointly modeling texture, layout and contextq,” Int. J. Comput. Vis.81(1), 2–23 (2009). [CrossRef]
  39. C. E. Metz, “Basic principles of ROC analysis,” Semin. Nucl. Med.8(4), 283–298 (1978). [CrossRef] [PubMed]
  40. G. van Soest, E. Regar, T. P. Goderie, N. Gonzalo, S. Koljenović, G. J. van Leenders, P. W. Serruys, and A. F. van der Steen, “Pitfalls in plaque characterization by OCT: image artifacts in native coronary arteries,” JACC Cardiovasc. Imaging4(7), 810–813 (2011). [CrossRef] [PubMed]
  41. A. Rosset, L. Spadola, and O. Ratib, “OsiriX: an open-source software for navigating in multidimensional DICOM images,” J. Digit. Imaging17(3), 205–216 (2004). [CrossRef] [PubMed]
  42. L. Thrane, M. H. Frosz, T. M. Jørgensen, A. Tycho, H. T. Yura, and P. E. Andersen, “Extraction of optical scattering parameters and attenuation compensation in optical coherence tomography images of multilayered tissue structures,” Opt. Lett.29(14), 1641–1643 (2004). [CrossRef] [PubMed]
  43. P. O. Gislason, J. A. Benediktsson, and J. R. Sveinsson, “Random forests for land cover classification,” Pattern Recognit. Lett.27(4), 294–300 (2006). [CrossRef]
  44. A. Bosch, A. Zisserman, and X. Munoz, “Image classification using Random Forests and Ferns,” IEEE 11th Int. Conf. Computer Vision (2007). [CrossRef]
  45. J. Rieber, O. Meissner, G. Babaryka, S. Reim, M. Oswald, A. Koenig, T. M. Schiele, M. Shapiro, K. Theisen, M. F. Reiser, V. Klauss, and U. Hoffmann, “Diagnostic accuracy of optical coherence tomography and intravascular ultrasound for the detection and characterization of atherosclerotic plaque composition in ex-vivo coronary specimens: a comparison with histology,” Coron. Artery Dis.17(5), 425–430 (2006). [CrossRef] [PubMed]
  46. O. A. Meissner, J. Rieber, G. Babaryka, M. Oswald, S. Reim, U. Siebert, T. Redel, M. Reiser, and U. Mueller-Lisse, “Intravascular optical coherence tomography: comparison with histopathology in atherosclerotic peripheral artery specimens,” J. Vasc. Interv. Radiol.17(2), 343–349 (2006). [CrossRef] [PubMed]
  47. A. Tanaka, G. J. Tearney, and B. E. Bouma, “Challenges on the frontier of intracoronary imaging: atherosclerotic plaque macrophage measurement by optical coherence tomography,” J. Biomed. Opt.15(1), 011104 (2010). [CrossRef] [PubMed]
  48. G. Nakazawa, A. Finn, and R. Virmani, “Morphologic predictors of drug-eluting stent thrombosis,” U.S. Cardiol.4(1), 75–76 (2006).
  49. F. Imola, M. Occhipinti, G. Biondi-Zoccai, L. Di Vito, V. Ramazzotti, A. Manzoli, A. Pappalardo, A. Cremonesi, M. Albertucci, and F. Prati, “Association between proximal stent edge positioning on atherosclerotic plaques containing lipid pools and postprocedural myocardial infarction (from the CLI-POOL Study),” Am. J. Cardiol.111(4), 526–531 (2013). [CrossRef] [PubMed]
  50. R. Kawaguchi, H. Tsurugaya, H. Hoshizaki, T. Toyama, S. Oshima, and K. Taniguchi, “Impact of lesion calcification on clinical and angiographic outcome after sirolimus-eluting stent implantation in real-world patients,” Cardiovasc. Revasc. Med.9(1), 2–8 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited