OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 4, Iss. 7 — Jul. 1, 2013
  • pp: 1176–1187

Estimating soft tissue thickness from light-tissue interactions––a simulation study

Tobias Wissel, Ralf Bruder, Achim Schweikard, and Floris Ernst  »View Author Affiliations


Biomedical Optics Express, Vol. 4, Issue 7, pp. 1176-1187 (2013)
http://dx.doi.org/10.1364/BOE.4.001176


View Full Text Article

Enhanced HTML    Acrobat PDF (5691 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Immobilization and marker-based motion tracking in radiation therapy often cause decreased patient comfort. However, the more comfortable alternative of optical surface tracking is highly inaccurate due to missing point-to-point correspondences between subsequent point clouds as well as elastic deformation of soft tissue. In this study, we present a proof of concept for measuring subcutaneous features with a laser scanner setup focusing on the skin thickness as additional input for high accuracy optical surface tracking. Using Monte-Carlo simulations for multi-layered tissue, we show that informative features can be extracted from the simulated tissue reflection by integrating intensities within concentric ROIs around the laser spot center. Training a regression model with a simulated data set identifies patterns that allow for predicting skin thickness with a root mean square error of down to 18 µm. Different approaches to compensate for varying observation angles were shown to yield errors still below 90 µm. Finally, this initial study provides a very promising proof of concept and encourages research towards a practical prototype.

© 2013 OSA

OCIS Codes
(100.5010) Image processing : Pattern recognition
(170.1610) Medical optics and biotechnology : Clinical applications
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(280.0280) Remote sensing and sensors : Remote sensing and sensors
(170.6935) Medical optics and biotechnology : Tissue characterization

ToC Category:
Optics of Tissue and Turbid Media

History
Original Manuscript: May 30, 2013
Manuscript Accepted: June 9, 2013
Published: June 14, 2013

Citation
Tobias Wissel, Ralf Bruder, Achim Schweikard, and Floris Ernst, "Estimating soft tissue thickness from light-tissue interactions––a simulation study," Biomed. Opt. Express 4, 1176-1187 (2013)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-4-7-1176


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. M. Buatti, F. J. Bova, W. A. Friedman, S. L. Meeks, R. B. Marcus, J. P. Mickle, T. L. Ellis, and W. M. Mendenhall, “Preliminary experience with frameless stereotactic radiotherapy,” Int. J. Radiat. Oncol., Biol., Phys.42(3), 591–599 (1998). [CrossRef] [PubMed]
  2. H. M. Kooy, S. F. Dunbar, N. J. Tarbell, E. Mannarino, N. Ferarro, S. Shusterman, M. Bellerive, L. Finn, C. V. McDonough, and J. S. Loeffler, “Adaptation and verification of the relocatable Gill–Thomas–Cosman frame in stereotactic radiotherapy,” Int. J. Radiat. Oncol., Biol., Phys.30(3), 685–691 (1994). [CrossRef] [PubMed]
  3. M. Fuss, B. J. Salter, D. Cheek, A. Sadeghi, J. M. Hevezi, and T. S. Herman, “Repositioning accuracy of a commercially available thermoplastic mask system,” Radiother. Oncol.71(3), 339–345 (2004). [CrossRef] [PubMed]
  4. J. L. Robar, B. G. Clark, J. W. Schella, and C. S. Kim, “Analysis of patient repositioning accuracy in precision radiation therapy using automated image fusion,” J. Appl. Clin. Med. Phys.6(1), 71–83 (2005). [CrossRef] [PubMed]
  5. G. Minniti, M. Valeriani, E. Clarke, M. D’Arienzo, M. Ciotti, R. Montagnoli, F. Saporetti, and R. M. Enrici, “Fractionated stereotactic radiotherapy for skull base tumors: analysis of treatment accuracy using a stereotactic mask fixation system,” Radiat. Oncol.5(1), 1 (2010). [CrossRef] [PubMed]
  6. E. Tryggestad, M. Christian, E. Ford, C. Kut, Y. Le, G. Sanguineti, D. Y. Song, and L. Kleinberg, “Inter- and intrafraction patient positioning uncertainties for intracranial radiotherapy: a study of four frameless, thermoplastic mask-based immobilization strategies using daily cone-beam CT,” Int. J. Radiat. Oncol., Biol., Phys.80(1), 281–290 (2011). [CrossRef] [PubMed]
  7. T. H. Wagner, S. L. Meeks, F. J. Bova, W. A. Friedman, T. R. Willoughby, P. A. Kupelian, and W. Tome, “Optical tracking technology in stereotactic radiation therapy,” Med. Dosim.32(2), 111–120 (2007). [CrossRef] [PubMed]
  8. P. J. Besl and N. D. McKay, “A method for registration of 3-D shapes,” IEEE Trans. Pattern Anal. Mach. Intell.14(2), 239–256 (1992). [CrossRef]
  9. J. Xia and R. A. Siochi, “A real-time respiratory motion monitoring system using KINECT: proof of concept,” Med. Phys.39(5), 2682–2685 (2012). [CrossRef] [PubMed]
  10. J. Schaerer, A. Fassi, M. Riboldi, P. Cerveri, G. Baroni, and D. Sarrut, “Multi-dimensional respiratory motion tracking from markerless optical surface imaging based on deformable mesh registration,” Phys. Med. Biol.57(2), 357–373 (2012). [CrossRef] [PubMed]
  11. L. Wang, S. L. Jacques, and L. Zheng, “MCML–Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed.47(2), 131–146 (1995). [CrossRef] [PubMed]
  12. D. M. Mancini, L. Bolinger, H. Li, K. Kendrick, B. Chance, and J. R. Wilson, “Validation of near-infrared spectroscopy in humans,” J. Appl. Physiol.77(6), 2740–2747 (1994). [PubMed]
  13. L. Kilpatrick-Liverman, P. Kazmi, E. Wolff, and T. G. Polefka, “The use of near-infrared spectroscopy in skin care applications,” Skin Res. Technol.12(3), 162–169 (2006). [CrossRef] [PubMed]
  14. E. Salomatina, B. Jiang, J. Novak, and A. N. Yaroslavsky, “Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range,” J. Biomed. Opt.11(6), 064026 (2006). [CrossRef] [PubMed]
  15. A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D Appl. Phys.38(15), 2543–2555 (2005). [CrossRef]
  16. J. A. Wahr, K. K. Tremper, S. Samra, and D. T. Delpy, “Near-infrared spectroscopy: theory and applications,” J. Cardiothorac. Vasc. Anesth.10(3), 406–418 (1996). [CrossRef] [PubMed]
  17. I. Bodén, D. Nilsson, P. Naredi, and B. Lindholm-Sethson, “Characterization of healthy skin using near infrared spectroscopy and skin impedance,” Med. Biol. Eng. Comput.46(10), 985–995 (2008). [CrossRef] [PubMed]
  18. H. Lui, J. Zhao, D. McLean, and H. Zeng, “Real-time Raman spectroscopy for in vivo skin cancer diagnosis,” Cancer Res.72(10), 2491–2500 (2012). [CrossRef] [PubMed]
  19. T. R. Hata, T. A. Scholz, I. V. Ermakov, R. W. McClane, F. Khachik, W. Gellermann, and L. K. Pershing, “Non-invasive Raman spectroscopic detection of carotenoids in human skin,” J. Invest. Dermatol.115(3), 441–448 (2000). [CrossRef] [PubMed]
  20. A. Doronin and I. Meglinski, “Online object-oriented Monte Carlo computational tool for the needs of biomedical optics,” Biomed. Opt. Express2(9), 2461–2469 (2011). [CrossRef] [PubMed]
  21. E. Alerstam, W. C. Lo, T. D. Han, J. Rose, S. Andersson-Engels, and L. Lilge, “Next-generation acceleration and code optimization for light transport in turbid media using GPUs,” Biomed. Opt. Express1(2), 658–675 (2010). [CrossRef] [PubMed]
  22. G. I. Petrov, A. Doronin, H. T. Whelan, I. Meglinski, and V. V. Yakovlev, “Human tissue color as viewed in high dynamic range optical spectral transmission measurements,” Biomed. Opt. Express3(9), 2154–2161 (2012). [CrossRef] [PubMed]
  23. A. Doronin, I. Fine, and I. Meglinski, “Assessment of the calibration curve for transmittance pulse-oximetry,” Laser Phys.21(11), 1972–1977 (2011). [CrossRef]
  24. I. V. Meglinski and S. J. Matcher, “Computer simulation of the skin reflectance spectra,” Comput. Methods Programs Biomed.70(2), 179–186 (2003). [CrossRef] [PubMed]
  25. E. A. Genina, A. N. Bashkatov, and V. V. Tuchin, “Optical clearing of cranial bone,” Adv. Opt. Technol.2008, 267867 (2008). [CrossRef]
  26. I. V. Meglinsky and S. J. Matcher, “Modeling the sampling volume for skin blood oxygenation measurements,” Med. Biol. Eng. Comput.39(1), 44–50 (2001). [CrossRef] [PubMed]
  27. A. Smola and B. Schölkopf, “A tutorial on Support Vector regression,” Stat. Comput.14(3), 199–222 (2004). [CrossRef]
  28. A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D Appl. Phys.38(15), 2543–2555 (2005). [CrossRef]
  29. C. R. Simpson, M. Kohl, M. Essenpreis, and M. Cope, “Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique,” Phys. Med. Biol.43(9), 2465–2478 (1998). [CrossRef] [PubMed]
  30. R. R. Anderson and J. A. Parrish, “The optics of human skin,” J. Invest. Dermatol.77(1), 13–19 (1981). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited