OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 4, Iss. 8 — Aug. 1, 2013
  • pp: 1269–1284

Depth resolved detection of lipid using spectroscopic optical coherence tomography

Christine P. Fleming, Jocelyn Eckert, Elkan F. Halpern, Joseph A. Gardecki, and Guillermo J. Tearney  »View Author Affiliations


Biomedical Optics Express, Vol. 4, Issue 8, pp. 1269-1284 (2013)
http://dx.doi.org/10.1364/BOE.4.001269


View Full Text Article

Acrobat PDF (3020 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Optical frequency domain imaging (OFDI) can identify key components related to plaque vulnerability but can suffer from artifacts that could prevent accurate identification of lipid rich regions. In this paper, we present a model of depth resolved spectral analysis of OFDI data for improved detection of lipid. A quadratic Discriminant analysis model was developed based on phantom compositions known chemical mixtures and applied to a tissue phantom of a lipid-rich plaque. We demonstrate that a combined spectral and attenuation model can be used to predict the presence of lipid in OFDI images.

© 2013 OSA

OCIS Codes
(110.4500) Imaging systems : Optical coherence tomography
(170.1580) Medical optics and biotechnology : Chemometrics
(170.6510) Medical optics and biotechnology : Spectroscopy, tissue diagnostics

ToC Category:
Optical Coherence Tomography

History
Original Manuscript: May 2, 2013
Revised Manuscript: June 14, 2013
Manuscript Accepted: June 15, 2013
Published: July 5, 2013

Citation
Christine P. Fleming, Jocelyn Eckert, Elkan F. Halpern, Joseph A. Gardecki, and Guillermo J. Tearney, "Depth resolved detection of lipid using spectroscopic optical coherence tomography," Biomed. Opt. Express 4, 1269-1284 (2013)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-4-8-1269


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. V. L. Roger, A. S. Go, D. M. Lloyd-Jones, E. J. Benjamin, J. D. Berry, W. B. Borden, D. M. Bravata, S. Dai, E. S. Ford, C. S. Fox, H. J. Fullerton, C. Gillespie, S. M. Hailpern, J. A. Heit, V. J. Howard, B. M. Kissela, S. J. Kittner, D. T. Lackland, J. H. Lichtman, L. D. Lisabeth, D. M. Makuc, G. M. Marcus, A. Marelli, D. B. Matchar, C. S. Moy, D. Mozaffarian, M. E. Mussolino, G. Nichol, N. P. Paynter, E. Z. Soliman, P. D. Sorlie, N. Sotoodehnia, T. N. Turan, S. S. Virani, N. D. Wong, D. Woo, M. B. Turner, M. Turner, and American Heart Association Statistics Committee and Stroke Statistics Subcommittee, “Heart Disease and Stroke Statistics—2012 Update: A Report From the American Heart Association,” Circulation125(1), e2–e220 (2012). [CrossRef] [PubMed]
  2. A. P. Burke, A. Farb, G. T. Malcom, Y.-H. Liang, J. Smialek, and R. Virmani, “Coronary Risk Factors and Plaque Morphology in Men with Coronary Disease who Died Suddenly,” N. Engl. J. Med.336(18), 1276–1282 (1997). [CrossRef] [PubMed]
  3. A. V. Finn, M. Nakano, J. Narula, F. D. Kolodgie, and R. Virmani, “Concept of Vulnerable/Unstable Plaque,” Arterioscler. Thromb. Vasc. Biol.30(7), 1282–1292 (2010). [CrossRef] [PubMed]
  4. G. J. Tearney, H. Yabushita, S. L. Houser, H. T. Aretz, I.-K. Jang, K. H. Schlendorf, C. R. Kauffman, M. Shishkov, E. F. Halpern, and B. E. Bouma, “Quantification of Macrophage Content in Atherosclerotic Plaques by Optical Coherence Tomography,” Circulation107(1), 113–119 (2003). [CrossRef] [PubMed]
  5. A. Tanaka, G. J. Tearney, and B. E. Bouma, “Challenges on the frontier of intracoronary imaging: atherosclerotic plaque macrophage measurement by optical coherence tomography,” J. Biomed. Opt.15(1), 011104 (2010). [CrossRef] [PubMed]
  6. Z. Wang, H. Kyono, H. G. Bezerra, H. Wang, M. Gargesha, C. Alraies, C. Xu, J. M. Schmitt, D. L. Wilson, M. A. Costa, and A. M. Rollins, “Semiautomatic segmentation and quantification of calcified plaques in intracoronary optical coherence tomography images,” J. Biomed. Opt.15(6), 061711 (2010). [CrossRef] [PubMed]
  7. T. Kubo, T. Imanishi, S. Takarada, A. Kuroi, S. Ueno, T. Yamano, T. Tanimoto, Y. Matsuo, T. Masho, H. Kitabata, K. Tsuda, Y. Tomobuchi, and T. Akasaka, “Assessment of Culprit Lesion Morphology in Acute Myocardial Infarction: Ability of Optical Coherence Tomography Compared with Intravascular Ultrasound and Coronary Angioscopy,” J. Am. Coll. Cardiol.50(10), 933–939 (2007). [CrossRef] [PubMed]
  8. D. Chamié, Z. Wang, H. Bezerra, A. M. Rollins, and M. A. Costa, “Optical Coherence Tomography and Fibrous Cap Characterization,” Curr. Cardiovasc. Imaging Rep.4(4), 276–283 (2011). [CrossRef] [PubMed]
  9. H. Yabushita, B. E. Bouma, S. L. Houser, H. T. Aretz, I.-K. Jang, K. H. Schlendorf, C. R. Kauffman, M. Shishkov, D.-H. Kang, E. F. Halpern, and G. J. Tearney, “Characterization of Human Atherosclerosis by Optical Coherence Tomography,” Circulation106(13), 1640–1645 (2002). [CrossRef] [PubMed]
  10. D. Levitz, L. Thrane, M. H. Frosz, P. Andersen, C. Andersen, S. Andersson-Engels, J. Valanciunaite, J. Swartling, and P. Hansen, “Determination of optical scattering properties of highly-scattering media in optical coherence tomography images,” Opt. Express12(2), 249–259 (2004). [CrossRef] [PubMed]
  11. F. J. van der Meer, D. J. Faber, D. M. Baraznji Sassoon, M. C. Aalders, G. Pasterkamp, and T. G. van Leeuwen, “Localized Measurement of Optical Attenuation Coefficients of Atherosclerotic Plaque Constituents by Quantitative Optical Coherence Tomography,” IEEE Trans. Med. Imaging24(10), 1369–1376 (2005). [CrossRef] [PubMed]
  12. F. J. van der Meer, D. J. Faber, J. Perrée, G. Pasterkamp, D. Baraznji Sassoon, and T. G. van Leeuwen, “Quantitative optical coherence tomography of arterial wall components,” Lasers Med. Sci.20(1), 45–51 (2005). [CrossRef] [PubMed]
  13. C. Xu, J. M. Schmitt, S. G. Carlier, and R. Virmani, “Characterization of atherosclerosis plaques by measuring both backscattering and attenuation coefficients in optical coherence tomography,” J. Biomed. Opt.13(3), 034003 (2008). [CrossRef] [PubMed]
  14. G. van Soest, T. Goderie, E. Regar, S. Koljenović, G. L. van Leenders, N. Gonzalo, S. van Noorden, T. Okamura, B. E. Bouma, G. J. Tearney, J. W. Oosterhuis, P. W. Serruys, and A. F. van der Steen, “Atherosclerotic tissue characterization in vivo by optical coherence tomography attenuation imaging,” J. Biomed. Opt.15(1), 011105 (2010). [CrossRef] [PubMed]
  15. U. Morgner, W. Drexler, F. X. Kärtner, X. D. Li, C. Pitris, E. P. Ippen, and J. G. Fujimoto, “Spectroscopic optical coherence tomography,” Opt. Lett.25(2), 111–113 (2000). [CrossRef] [PubMed]
  16. R. Leitgeb, M. Wojtkowski, A. Kowalczyk, C. K. Hitzenberger, M. Sticker, and A. F. Fercher, “Spectral measurement of absorption by spectroscopic frequency-domain optical coherence tomography,” Opt. Lett.25(11), 820–822 (2000). [CrossRef] [PubMed]
  17. A. L. Oldenburg, C. Xu, and S. A. Boppart, “Spectroscopic Optical Coherence Tomography and Microscopy,” IEEE J. Sel. Top. Quantum Electron.13(6), 1629–1640 (2007). [CrossRef]
  18. M. Kulkarn and J. A. Izatt, “Spectroscopic optical coherence tomography,” in Conference on Lasers and Electro Optics, Vol. 9 of 1996 OSA Technical Digest Series (Optical Society of America, 1996), pp. 59–60.
  19. D. J. Faber, E. G. Mik, M. C. G. Aalders, and T. G. van Leeuwen, “Light absorption of (oxy-)hemoglobin assessed by spectroscopic optical coherence tomography,” Opt. Lett.28(16), 1436–1438 (2003). [CrossRef] [PubMed]
  20. D. J. Faber, E. G. Mik, M. C. G. Aalders, and T. G. van Leeuwen, “Toward assessment of blood oxygen saturation by spectroscopic optical coherence tomography,” Opt. Lett.30(9), 1015–1017 (2005). [CrossRef] [PubMed]
  21. M. Laubscher, S. e. Bourquin, L. Froehly, B. Karamata, and T. Lasser, “Spectroscopic optical coherence tomography based on wavelength de-multiplexing and smart pixel array detection,” Opt. Commun.237(4-6), 275–283 (2004). [CrossRef]
  22. H. Cang, T. Sun, Z.-Y. Li, J. Chen, B. J. Wiley, Y. Xia, and X. Li, “Gold nanocages as contrast agents for spectroscopic optical coherence tomography,” Opt. Lett.30(22), 3048–3050 (2005). [CrossRef] [PubMed]
  23. R. N. Graf, F. E. Robles, X. Chen, and A. Wax, “Detecting precancerous lesions in the hamster cheek pouch using spectroscopic white-light optical coherence tomography to assess nuclear morphology via spectral oscillations,” J. Biomed. Opt.14(6), 064030 (2009). [CrossRef] [PubMed]
  24. S. Takarada, T. Imanishi, Y. Liu, H. Ikejima, H. Tsujioka, A. Kuroi, K. Ishibashi, K. Komukai, T. Tanimoto, Y. Ino, H. Kitabata, T. Kubo, N. Nakamura, K. Hirata, A. Tanaka, M. Mizukoshi, and T. Akasaka, “Advantage of Next-Generation Frequency-Domain Optical Coherence Tomography Compared with Conventional Time-Domain System in the Assessment of Coronary Lesion,” Catheter. Cardiovasc. Interv.75(2), 202–206 (2010). [CrossRef] [PubMed]
  25. W. Jaross, V. Neumeister, P. Lattke, and D. Schuh, “Determination of cholesterol in atherosclerotic plaques using near infrared diffuse reflection spectroscopy,” Atherosclerosis147(2), 327–337 (1999). [CrossRef] [PubMed]
  26. T. W. de Bruin, C. B. Brouwer, M. van Linde-Sibenius Trip, H. Jansen, and D. W. Erkelens, “Different postprandial metabolism of olive oil and soybean oil: a possible mechanism of the high-density lipoprotein conserving effect of olive oil,” Am. J. Clin. Nutr.58(4), 477–483 (1993). [PubMed]
  27. U. G. Indahl, N. S. Sahni, B. Kirkhus, and T. Næs, “Multivariate strategies for classification based on NIR-spectra—with application to mayonnaise,” Chemom. Intell. Lab. Syst.49(1), 19–31 (1999). [CrossRef]
  28. E. Stachowska, B. Dołegowska, D. Chlubek, T. Wesołowska, K. Ciechanowski, P. Gutowski, H. Szumiłowicz, and R. A. Turowski, “Dietary trans fatty acids and composition of human atheromatous plaques,” Eur. J. Nutr.43(5), 313–318 (2004). [CrossRef] [PubMed]
  29. P. Weinmann, M. Jouan, Q. D. Nguyen, B. Lacroix, C. Groiselle, J.-P. Bonte, and G. Luc, “Quantitative analysis of cholesterol and cholesteryl esters in human atherosclerotic plaques using near-infrared Raman spectroscopy,” Atherosclerosis140(1), 81–88 (1998). [CrossRef] [PubMed]
  30. R. Manoharan, J. J. Baraga, M. S. Feld, and R. P. Rava, “Quantitative histochemical analysis of human artery using Raman spectroscopy,” J. Photochem. Photobiol. B16(2), 211–233 (1992). [CrossRef] [PubMed]
  31. S. H. Yun, G. J. Tearney, B. J. Vakoc, M. Shishkov, W. Y. Oh, A. E. Desjardins, M. J. Suter, R. C. Chan, J. A. Evans, I.-K. Jang, N. S. Nishioka, J. F. de Boer, and B. E. Bouma, “Comprehensive volumetric optical microscopy in vivo,” Nat. Med.12(12), 1429–1433 (2007). [CrossRef] [PubMed]
  32. J. M. Schmitt, A. Knüttel, M. Yadlowsky, and M. A. Eckhaus, “Optical-coherence tomography of a dense tissue: statistics of attenuation and backscattering,” Phys. Med. Biol.39(10), 1705–1720 (1994). [CrossRef] [PubMed]
  33. R. J. Barnes, M. S. Dhanoa, and S. J. Lister, “Standard Normal Variae Transformation and De-trending of Near-Infrared Diffuse Reflectance Spectra,” Appl. Spectrosc.43(5), 772–777 (1989). [CrossRef]
  34. L. Marcu, M. C. Fishbein, J.-M. I. Maarek, and W. S. Grundfest, “Discrimination of Human Coronary Artery Atherosclerotic Lipid-Rich Lesions by Time-Resolved Laser-Induced Fluorescence Spectroscopy,” Arterioscler. Thromb. Vasc. Biol.21(7), 1244–1250 (2001). [CrossRef] [PubMed]
  35. S. K. Nadkarni, M. C. Pierce, B. H. Park, J. F. de Boer, P. Whittaker, B. E. Bouma, J. E. Bressner, E. Halpern, S. L. Houser, and G. J. Tearney, “Measurement of collagen and smooth muscle cell content in atherosclerotic plaques using polarization-sensitive optical coherence tomography,” J. Am. Coll. Cardiol.49(13), 1474–1481 (2007). [CrossRef] [PubMed]
  36. Z. Wang, H. Kyono, H. G. Bezerra, H. Wang, M. Gargesha, C. Alraies, C. Xu, J. M. Schmitt, D. L. Wilson, M. A. Costa, and A. M. Rollins, “Semiautomatic segmentation and quantification of calcified plaques in intracoronary optical coherence tomography images,” J. Biomed. Opt.15(6), 061711 (2010). [CrossRef] [PubMed]
  37. S. K. Nadkarni, B. E. Bouma, J. de Boer, and G. J. Tearney, “Evaluation of collagen in atherosclerotic plaques: the use of two coherent laser-based imaging methods,” Lasers Med. Sci.24(3), 439–445 (2009). [CrossRef] [PubMed]
  38. C.-L. Tsai, J.-C. Chen, and W.-J. Wang, “Near-infrared Absorption Property of Biological Soft Tissue Constituents,” J. Med. Biol. Eng.21(1), 7–14 (2001).
  39. C. Xu, D. L. Marks, M. N. Do, and S. A. Boppart, “Separation of absorption and scattering profiles in spectroscopic optical coherence tomography using a least-squares algorithm,” Opt. Express12(20), 4790–4803 (2004). [CrossRef] [PubMed]
  40. B. Hermann, K. Bizheva, A. Unterhuber, B. Povazay, H. Sattmann, L. Schmetterer, A. Fercher, and W. Drexler, “Precision of extracting absorption profiles from weakly scattering media with spectroscopic time-domain optical coherence tomography,” Opt. Express12(8), 1677–1688 (2004). [CrossRef] [PubMed]
  41. C. Xu, P. S. Carney, and S. A. Boppart, “Wavelength-dependent scattering in spectroscopic optical coherence tomography,” Opt. Express13(14), 5450–5462 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited