OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 4, Iss. 8 — Aug. 1, 2013
  • pp: 1305–1317

In vivo imaging of human retinal microvasculature using adaptive optics scanning light ophthalmoscope fluorescein angiography

Alexander Pinhas, Michael Dubow, Nishit Shah, Toco Y. Chui, Drew Scoles, Yusufu N. Sulai, Rishard Weitz, Joseph B. Walsh, Joseph Carroll, Alfredo Dubra, and Richard B. Rosen  »View Author Affiliations


Biomedical Optics Express, Vol. 4, Issue 8, pp. 1305-1317 (2013)
http://dx.doi.org/10.1364/BOE.4.001305


View Full Text Article

Enhanced HTML    Acrobat PDF (1686 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The adaptive optics scanning light ophthalmoscope (AOSLO) allows visualization of microscopic structures of the human retina in vivo. In this work, we demonstrate its application in combination with oral and intravenous (IV) fluorescein angiography (FA) to the in vivo visualization of the human retinal microvasculature. Ten healthy subjects ages 20 to 38 years were imaged using oral (7 and/or 20 mg/kg) and/or IV (500 mg) fluorescein. In agreement with current literature, there were no adverse effects among the patients receiving oral fluorescein while one patient receiving IV fluorescein experienced some nausea and heaving. We determined that all retinal capillary beds can be imaged using clinically accepted fluorescein dosages and safe light levels according to the ANSI Z136.1-2000 maximum permissible exposure. As expected, the 20 mg/kg oral dose showed higher image intensity for a longer period of time than did the 7 mg/kg oral and the 500 mg IV doses. The increased resolution of AOSLO FA, compared to conventional FA, offers great opportunity for studying physiological and pathological vascular processes.

© 2013 OSA

OCIS Codes
(170.1610) Medical optics and biotechnology : Clinical applications
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.4470) Medical optics and biotechnology : Ophthalmology
(330.5380) Vision, color, and visual optics : Physiology
(110.1080) Imaging systems : Active or adaptive optics

ToC Category:
Ophthalmology Applications

History
Original Manuscript: May 21, 2013
Revised Manuscript: June 22, 2013
Manuscript Accepted: July 5, 2013
Published: July 12, 2013

Virtual Issues
Novel Techniques in Microscopy (2013) Biomedical Optics Express

Citation
Alexander Pinhas, Michael Dubow, Nishit Shah, Toco Y. Chui, Drew Scoles, Yusufu N. Sulai, Rishard Weitz, Joseph B. Walsh, Joseph Carroll, Alfredo Dubra, and Richard B. Rosen, "In vivo imaging of human retinal microvasculature using adaptive optics scanning light ophthalmoscope fluorescein angiography," Biomed. Opt. Express 4, 1305-1317 (2013)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-4-8-1305


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. R. Novotny and D. L. Alvis, “A method of photographing fluorescence in circulating blood in the human retina,” Circulation24(1), 82–86 (1961). [CrossRef] [PubMed]
  2. M. Abraham, J. T. Ahlman, A. J. Boudreau, and J. L. Connelly, CPT 2011: Current Procedural Terminology (American Medical Association Press, 2010).
  3. L. A. Yannuzzi, The Retinal Atlas, Har/Psc ED. (Saunders, China, 2010).
  4. D. C. Kalogeromitros, M. P. Makris, X. S. Aggelides, A. I. Mellios, F. C. Giannoula, K. A. Sideri, A. A. Rouvas, and P. G. Theodossiadis, “Allergy skin testing in predicting adverse reactions to fluorescein: a prospective clinical study,” Acta Ophthalmol. (Copenh.)89(5), 480–483 (2011). [CrossRef] [PubMed]
  5. A. S. Kwan, C. Barry, I. L. McAllister, and I. Constable, “Fluorescein angiography and adverse drug reactions revisited: the Lions Eye experience,” Clin. Experiment. Ophthalmol.34(1), 33–38 (2006). [CrossRef] [PubMed]
  6. L. A. Yannuzzi, K. T. Rohrer, L. J. Tindel, R. S. Sobel, M. A. Costanza, W. Shields, and E. Zang, “Fluorescein angiography complication survey,” Ophthalmology93(5), 611–617 (1986). [PubMed]
  7. F. J. Ascaso, M. T. Tiestos, J. Navales, F. Iturbe, A. Palomar, and J. I. Ayala, ““Fatal acute myocardial infarction after intravenous fluorescein angiography,” Retina - J,” Ret. Vit. Dis13, 238–239 (1993).
  8. V. Fineschi, G. Monasterolo, R. Rosi, and E. Turillazzi, “Fatal anaphylactic shock during a fluorescein angiography,” Forensic Sci. Int.100(1-2), 137–142 (1999). [CrossRef] [PubMed]
  9. J. S. Kelley and M. Kincaid, “Retinal fluorography using oral fluorescein,” Arch. Ophthalmol.97(12), 2331–2332 (1979). [CrossRef] [PubMed]
  10. S. Ghose and B. K. Nayak, “Role of oral fluorescein in the diagnosis of early papilloedema in children,” Br. J. Ophthalmol.71(12), 910–915 (1987). [CrossRef] [PubMed]
  11. F. M. Razvi, E. E. Kritzinger, M. D. Tsaloumas, and R. E. Ryder, “Use of oral fluorescein angiography in the diagnosis of macular oedema within a diabetic retinopathy screening programme,” Diabet. Med.18(12), 1003–1006 (2001). [CrossRef] [PubMed]
  12. D. Squirrell, S. Dinakaran, S. Dhingra, C. Mody, C. Brand, and J. Talbot, “Oral fluorescein angiography with the scanning laser ophthalmoscope in diabetic retinopathy: a case controlled comparison with intravenous fluorescein angiography,” Eye (Lond.)19(4), 411–417 (2005). [CrossRef] [PubMed]
  13. C. R. Garcia, M. E. Rivero, D. U. Bartsch, S. Ishiko, A. Takamiya, K. Fukui, H. Hirokawa, T. Clark, A. Yoshida, and W. R. Freeman, “Oral fluorescein angiography with the confocal scanning laser ophthalmoscope,” Ophthalmology106(6), 1114–1118 (1999). [CrossRef] [PubMed]
  14. F. Gómez-Ulla, A. Malvar, M. Parafita, P. Polo, and I. Seoane, “Oral fluorescein angiography and fluoroscopy: determination of plasma fluorescein levels and clinical application,” Optom. Vis. Sci.69(12), 986–990 (1992). [CrossRef] [PubMed]
  15. A. P. Watson and E. S. Rosen, “Oral fluorescein angiography: reassessment of its relative safety and evaluation of optimum conditions with use of capsules,” Br. J. Ophthalmol.74(8), 458–461 (1990). [CrossRef] [PubMed]
  16. M. J. Noble, H. Cheng, and P. M. Jacobs, “Oral fluorescein and cystoid macular oedema: detection in aphakic and pseudophakic eyes,” Br. J. Ophthalmol.68(4), 221–224 (1984). [CrossRef] [PubMed]
  17. R. Azad, B. K. Nayak, H. K. Tewari, and P. K. Khosla, “Oral fluorescein angiography,” Indian J. Ophthalmol.32(5), 415–417 (1984). [PubMed]
  18. R. V. Azad, B. Baishya, N. Pal, Y. R. Sharma, A. Kumar, and R. Vohra, “Comparative evaluation of oral fluorescein angiography using the confocal scanning laser ophthalmoscope and digital fundus camera with intravenous fluorescein angiography using the digital fundus camera,” Clin. Experiment. Ophthalmol.34(5), 425–429 (2006). [CrossRef] [PubMed]
  19. R. Newsom, B. Moate, and T. Casswell, “Screening for diabetic retinopathy using digital colour photography and oral fluorescein angiography,” Eye (Lond.)14(4), 579–582 (2000). [CrossRef] [PubMed]
  20. K. S. Morgan and R. M. Franklin, ““Oral fluorescein angioscopy in aphakic children,” J Pediat. Ophth,” Strab.21, 33–36 (1984).
  21. T. Hara, M. Inami, and T. Hara, “Efficacy and safety of fluorescein angiography with orally administered sodium fluorescein,” Am. J. Ophthalmol.126(4), 560–564 (1998). [CrossRef] [PubMed]
  22. F. P. Kinsella and D. J. Mooney, “Anaphylaxis following oral fluorescein angiography,” Am. J. Ophthalmol.106(6), 745–746 (1988). [PubMed]
  23. F. Gómez-Ulla, C. Gutiérrez, and I. Seoane, “Severe anaphylactic reaction to orally administered fluorescein,” Am. J. Ophthalmol.112(1), 94 (1991). [PubMed]
  24. K. R. Mendis, C. Balaratnasingam, P. Yu, C. J. Barry, I. L. McAllister, S. J. Cringle, and D. Y. Yu, “Correlation of histologic and clinical images to determine the diagnostic value of fluorescein angiography for studying retinal capillary detail,” Invest. Ophthalmol. Vis. Sci.51(11), 5864–5869 (2010). [CrossRef] [PubMed]
  25. A. Roorda and D. R. Williams, “The arrangement of the three cone classes in the living human eye,” Nature397(6719), 520–522 (1999). [CrossRef] [PubMed]
  26. J. Carroll, S. S. Choi, and D. R. Williams, “In vivo imaging of the photoreceptor mosaic of a rod monochromat,” Vision Res.48(26), 2564–2568 (2008). [CrossRef] [PubMed]
  27. D. C. Gray, W. Merigan, J. I. Wolfing, B. P. Gee, J. Porter, A. Dubra, T. H. Twietmeyer, K. Ahamd, R. Tumbar, F. Reinholz, and D. R. Williams, “In vivo fluorescence imaging of primate retinal ganglion cells and retinal pigment epithelial cells,” Opt. Express14(16), 7144–7158 (2006). [CrossRef] [PubMed]
  28. J. I. W. Morgan, A. Dubra, R. Wolfe, W. H. Merigan, and D. R. Williams, “In vivo autofluorescence imaging of the human and macaque retinal pigment epithelial cell mosaic,” Invest. Ophthalmol. Vis. Sci.50(3), 1350–1359 (2008). [CrossRef] [PubMed]
  29. O. P. Kocaoglu, B. Cense, R. S. Jonnal, Q. Wang, S. Lee, W. Gao, and D. T. Miller, “Imaging retinal nerve fiber bundles using optical coherence tomography with adaptive optics,” Vision Res.51(16), 1835–1844 (2011). [CrossRef] [PubMed]
  30. T. Y. Chui, D. A. Vannasdale, and S. A. Burns, “The use of forward scatter to improve retinal vascular imaging with an adaptive optics scanning laser ophthalmoscope,” Biomed. Opt. Express3(10), 2537–2549 (2012). [CrossRef] [PubMed]
  31. T. Y. Chui, Z. Zhong, H. Song, and S. A. Burns, “Foveal avascular zone and its relationship to foveal pit shape,” Optom. Vis. Sci.89(5), 602–610 (2012). [CrossRef] [PubMed]
  32. J. Tam, J. A. Martin, and A. Roorda, “Noninvasive visualization and analysis of parafoveal capillaries in humans,” Invest. Ophthalmol. Vis. Sci.51(3), 1691–1698 (2010). [CrossRef] [PubMed]
  33. J. Tam, K. P. Dhamdhere, P. Tiruveedhula, S. Manzanera, S. Barez, M. A. Bearse, A. J. Adams, and A. Roorda, “Disruption of the retinal parafoveal capillary network in type 2 diabetes before the onset of diabetic retinopathy,” Invest. Ophthalmol. Vis. Sci.52(12), 9257–9266 (2011). [CrossRef] [PubMed]
  34. Z. Burgansky-Eliash, A. Barak, H. Barash, D. A. Nelson, O. Pupko, A. Lowenstein, A. Grinvald, and A. Rubinstein, “Increased retinal blood flow velocity in patients with early diabetes mellitus,” Retina32(1), 112–119 (2012). [CrossRef] [PubMed]
  35. Z. Burgansky-Eliash, D. A. Nelson, O. P. Bar-Tal, A. Lowenstein, A. Grinvald, and A. Barak, “Reduced retinal blood flow velocity in diabetic retinopathy,” Retina30(5), 765–773 (2010). [CrossRef] [PubMed]
  36. D. A. Nelson, Z. Burgansky-Eliash, H. Barash, A. Loewenstein, A. Barak, E. Bartov, T. Rock, and A. Grinvald, “High-resolution wide-field imaging of perfused capillaries without the use of contrast agent,” Clin Opthalmol5, 1095–1106 (2011). [PubMed]
  37. V. J. Srinivasan, D. C. Adler, Y. Chen, I. Gorczynska, R. Huber, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-speed optical coherence tomography for three-dimensional and en face imaging of the retina and optic nerve head,” Invest. Ophthalmol. Vis. Sci.49(11), 5103–5110 (2008). [CrossRef] [PubMed]
  38. T. Schmoll, A. S. G. Singh, C. Blatter, S. Schriefl, C. Ahlers, U. Schmidt-Erfurth, and R. A. Leitgeb, “Imaging of the parafoveal capillary network and its integrity analysis using fractal dimension,” Biomed. Opt. Express2(5), 1159–1168 (2011). [CrossRef] [PubMed]
  39. Z. Zhi, X. Yin, S. Dziennis, T. Wietecha, K. L. Hudkins, C. E. Alpers, and R. K. Wang, “Optical microangiography of retina and choroid and measurement of total retinal blood flow in mice,” Biomed. Opt. Express3(11), 2976–2986 (2012). [CrossRef] [PubMed]
  40. D. Y. Kim, J. Fingler, R. J. Zawadzki, S. S. Park, L. S. Morse, D. M. Schwartz, S. E. Fraser, and J. S. Werner, “Noninvasive imaging of the foveal avascular zone with high-speed, phase-variance optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.53(1), 85–92 (2012). [CrossRef] [PubMed]
  41. D. Y. Kim, J. Fingler, J. S. Werner, D. M. Schwartz, S. E. Fraser, and R. J. Zawadzki, “In vivo volumetric imaging of human retinal circulation with phase-variance optical coherence tomography,” Biomed. Opt. Express2(6), 1504–1513 (2011). [CrossRef] [PubMed]
  42. S. Zotter, M. Pircher, T. Torzicky, M. Bonesi, E. Götzinger, R. A. Leitgeb, and C. K. Hitzenberger, “Visualization of microvasculature by dual-beam phase-resolved Doppler optical coherence tomography,” Opt. Express19(2), 1217–1227 (2011). [CrossRef] [PubMed]
  43. Q. Wang, O. P. Kocaoglu, B. Cense, J. Bruestle, R. S. Jonnal, W. Gao, and D. T. Miller, “Imaging retinal capillaries using ultrahigh-resolution optical coherence tomography and adaptive optics,” Invest. Ophthalmol. Vis. Sci.52(9), 6292–6299 (2011). [CrossRef] [PubMed]
  44. A. Bradley, H. Zhang, R. A. Applegate, L. N. Thibos, and A. E. Elsner, “Entoptic image quality of the retinal vasculature,” Vision Res.38(17), 2685–2696 (1998). [CrossRef] [PubMed]
  45. M. Yap, J. Gilchrist, and J. Weatherill, “Psychophysical measurement of the foveal avascular zone,” Ophthalmic Physiol. Opt.7(4), 405–410 (1987). [CrossRef] [PubMed]
  46. A. C. Bird and R. A. Weale, “On the retinal vasculature of the human fovea,” Exp. Eye Res.19(5), 409–417 (1974). [CrossRef] [PubMed]
  47. J. Rha, R. S. Jonnal, K. E. Thorn, J. Qu, Y. Zhang, and D. T. Miller, “Adaptive optics flood-illumination camera for high speed retinal imaging,” Opt. Express14(10), 4552–4569 (2006). [CrossRef] [PubMed]
  48. M. Lombardo, M. Parravano, S. Serrao, P. Ducoli, M. Stirpe, and G. Lombardo, “Analysis of Retinal Capillaries in Patients with Type 1 Diabetes and Nonproliferative Diabetic Retinopathy Using Adaptive Optics Imaging,” Retina (to be published). [PubMed]
  49. D. Scoles, D. C. Gray, J. J. Hunter, R. Wolfe, B. P. Gee, Y. Geng, B. D. Masella, R. T. Libby, S. Russell, D. R. Williams, and W. H. Merigan, “In-vivo imaging of retinal nerve fiber layer vasculature: imaging histology comparison,” BMC Ophthalmol.9(1), 9 (2009). [CrossRef] [PubMed]
  50. D. P. Biss, D. Sumorok, S. A. Burns, R. H. Webb, Y. Zhou, T. G. Bifano, D. Côté, I. Veilleux, P. Zamiri, and C. P. Lin, “In vivo fluorescent imaging of the mouse retina using adaptive optics,” Opt. Lett.32(6), 659–661 (2007). [CrossRef] [PubMed]
  51. D. P. Biss, R. H. Webb, Y. Zhou, T. G. Bifano, P. Zamiri, and C. P. Lin, “An adaptive optics biomicroscope for mouse retinal imaging,” Proc. SPIE6467, 646703 (2007). [CrossRef]
  52. R. E. Barry and W. A. Behrendt, “Studies on the pharmacokinetics of fluorescein and its dilaurate ester under the conditions of the fluorescein dilaurate test,” Arzneimittelforschung35(3), 644–648 (1985). [PubMed]
  53. G. Smith and D. A. Atchison, The Eye and Visual Optical Instruments, 1st ed. (Cambridge University Press, Cambridge, 1997).
  54. A. Dubra and Y. Sulai, “Reflective afocal broadband adaptive optics scanning ophthalmoscope,” Biomed. Opt. Express2(6), 1757–1768 (2011). [CrossRef] [PubMed]
  55. A. Dubra and Z. Harvey, “Registration of 2D Images from Fast Scanning Ophthalmic Instruments ” in The 4th International Workshop on Biomedical Image Registration, B. Fischer, B. M. Dawant, and C. Lorenz, ed. (Springer Berlin Heidelberg, Germany, 2010), pp. 60–71.
  56. F. C. Delori, R. H. Webb, and D. H. Sliney, “Maximum permissible exposures for ocular safety (ANSI 2000), with emphasis on ophthalmic devices,” J. Opt. Soc. Am. A24(5), 1250–1265 (2007). [CrossRef]
  57. E. Nucera, D. Schiavino, E. Merendino, A. Buonomo, C. Roncallo, E. Pollastrini, C. Lombardo, T. De Pasquale, and G. Patriarca, “Successful fluorescein desensitization,” Allergy58(5), 458 (2003). [CrossRef] [PubMed]
  58. T. Wilson and A. R. Carlini, “Size of the detector in confocal imaging systems,” Opt. Lett.12(4), 227–229 (1987). [CrossRef] [PubMed]
  59. M. K. Ikram, Y. T. Ong, C. Y. Cheung, and T. Y. Wong, “Retinal vascular caliber measurements: clinical significance, current knowledge and future perspectives,” Ophthalmologica229(3), 125–136 (2013). [CrossRef] [PubMed]
  60. E. Zudaire, L. Gambardella, C. Kurcz, and S. Vermeren, “A computational tool for quantitative analysis of vascular networks,” PLoS ONE6(11), e27385 (2011). [CrossRef] [PubMed]
  61. A. Perez-Rovira, T. MacGillivray, E. Trucco, K. S. Chin, K. Zutis, C. Lupascu, D. Tegolo, A. Giachetti, P. J. Wilson, A. Doney, and B. Dhillon, “VAMPIRE: Vessel assessment and measurement platform for images of the retina,” in Proceedings of IEEE Conference on Engineering in Medicine and Biology Society (Institute of Electrical and Electronics Engineers, Boston, 2011), pp. 3391–3394. [CrossRef]
  62. M. B. Vickerman, P. A. Keith, T. L. McKay, D. J. Gedeon, M. Watanabe, M. Montano, G. Karunamuni, P. K. Kaiser, J. E. Sears, Q. Ebrahem, D. Ribita, A. G. Hylton, and P. Parsons-Wingerter, “VESGEN 2D: automated, user-interactive software for quantification and mapping of angiogenic and lymphangiogenic trees and networks,” Anat. Rec. (Hoboken)292(3), 320–332 (2009). [CrossRef] [PubMed]
  63. G. Dougherty, M. J. Johnson, and M. D. Wiers, “Measurement of retinal vascular tortuosity and its application to retinal pathologies,” Med. Biol. Eng. Comput.48(1), 87–95 (2010). [CrossRef] [PubMed]
  64. E. Bullitt, K. E. Muller, I. Jung, W. Lin, and S. Aylward, “Analyzing attributes of vessel populations,” Med. Image Anal.9(1), 39–49 (2005). [CrossRef] [PubMed]
  65. J. Flammer, K. Konieczka, R. M. Bruno, A. Virdis, A. J. Flammer, and S. Taddei, “The eye and the heart,” Eur. Heart J.34(17), 1270–1278 (2013). [CrossRef] [PubMed]
  66. T. Y. Wong and P. Mitchell, “Hypertensive retinopathy,” N. Engl. J. Med.351(22), 2310–2317 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited