OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 4, Iss. 9 — Sep. 1, 2013
  • pp: 1533–1547

Single-cell optoporation and transfection using femtosecond laser and optical tweezers

Muhammad Waleed, Sun-Uk Hwang, Jung-Dae Kim, Irfan Shabbir, Sang-Mo Shin, and Yong-Gu Lee  »View Author Affiliations


Biomedical Optics Express, Vol. 4, Issue 9, pp. 1533-1547 (2013)
http://dx.doi.org/10.1364/BOE.4.001533


View Full Text Article

Enhanced HTML    Acrobat PDF (3346 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper, we demonstrate a new single-cell optoporation and transfection technique using a femtosecond Gaussian laser beam and optical tweezers. Tightly focused near-infrared (NIR) femtosecond laser pulse was employed to transiently perforate the cellular membrane at a single point in MCF-7 cancer cells. A distinct technique was developed by trapping the microparticle using optical tweezers to focus the femtosecond laser precisely on the cell membrane to puncture it. Subsequently, an external gene was introduced in the cell by trapping and inserting the same plasmid-coated microparticle into the optoporated cell using optical tweezers. Various experimental parameters such as femtosecond laser exposure power, exposure time, puncture hole size, exact focusing of the femtosecond laser on the cell membrane, and cell healing time were closely analyzed to create the optimal conditions for cell viability. Following the insertion of plasmid-coated microparticles in the cell, the targeted cells exhibited green fluorescent protein (GFP) under the fluorescent microscope, hence confirming successful transfection into the cell. This new optoporation and transfection technique maximizes the level of selectivity and control over the targeted cell, and this may be a breakthrough method through which to induce controllable genetic changes in the cell.

© 2013 OSA

OCIS Codes
(000.1430) General : Biology and medicine
(020.4180) Atomic and molecular physics : Multiphoton processes
(020.7010) Atomic and molecular physics : Laser trapping
(140.7090) Lasers and laser optics : Ultrafast lasers
(320.2250) Ultrafast optics : Femtosecond phenomena
(140.3538) Lasers and laser optics : Lasers, pulsed

ToC Category:
Cell Studies

History
Original Manuscript: May 2, 2013
Revised Manuscript: June 27, 2013
Manuscript Accepted: June 30, 2013
Published: August 7, 2013

Citation
Muhammad Waleed, Sun-Uk Hwang, Jung-Dae Kim, Irfan Shabbir, Sang-Mo Shin, and Yong-Gu Lee, "Single-cell optoporation and transfection using femtosecond laser and optical tweezers," Biomed. Opt. Express 4, 1533-1547 (2013)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-4-9-1533


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. G. Nabel, G. Plautz, and G. J. Nabel, “Site-specific gene expression in vivo by direct gene transfer into the arterial wall,” Science249(4974), 1285–1288 (1990). [CrossRef] [PubMed]
  2. F. L. Graham and A. J. van der Eb, “A new technique for the assay of infectivity of human adenovirus 5 DNA,” Virology52(2), 456–467 (1973). [CrossRef] [PubMed]
  3. S. Bacchetti and F. L. Graham, “Transfer of the gene for thymidine kinase to thymidine kinase-deficient human cells by purified herpes simplex viral DNA,” Proc. Natl. Acad. Sci. U.S.A.74(4), 1590–1594 (1977). [CrossRef] [PubMed]
  4. D. Fischer, A. von Harpe, K. Kunath, H. Petersen, Y. Li, and T. Kissel, “Copolymers of ethylene imine and N-(2-hydroxyethyl)-ethylene imine as tools to study effects of polymer structure on physicochemical and biological properties of DNA complexes,” Bioconjug. Chem.13(5), 1124–1133 (2002). [CrossRef] [PubMed]
  5. S. Menuel, S. Fontanay, I. Clarot, R. E. Duval, L. Diez, and A. Marsura, “Synthesis and complexation ability of a novel bis- (guanidinium)-tetrakis-(beta-cyclodextrin) dendrimeric tetrapod as a potential gene delivery (DNA and siRNA) system. Study of cellular siRNA transfection,” Bioconjug. Chem.19(12), 2357–2362 (2008). [CrossRef] [PubMed]
  6. T. Welzel, I. Radtke, W. Meyer-Zaika, R. Heumann, and M. Epple, “Transfection of cells with custom-made calcium phosphate nanoparticles coated with DNA,” J. Mater. Chem.14(14), 2213–2217 (2004). [CrossRef]
  7. E. Neumann, M. Schaefer-Ridder, Y. Wang, and P. H. Hofschneider, “Gene transfer into mouse lyoma cells by electroporation in high electric fields,” EMBO J.1(7), 841–845 (1982). [PubMed]
  8. J. P. Dear, J. E. Field, and A. J. Walton, “Gas compression and jet formation in cavities collapsed by a shock wave,” Nature332(6164), 505–508 (1988). [CrossRef]
  9. M. Ward, J. Wu, and J.-F. Chiu, “Ultrasound-induced cell lysis and sonoporation enhanced by contrast agents,” J. Acoust. Soc. Am.105(5), 2951–2957 (1999). [CrossRef] [PubMed]
  10. D. L. Miller and J. Song, “Tumor growth reduction and DNA transfer by cavitation-enhanced high-intensity focused ultrasound in vivo,” Ultrasound Med. Biol.29(6), 887–893 (2003). [CrossRef] [PubMed]
  11. P. Prentice, A. Cuschieri, K. Dholakia, M. Prausnitz, and P. Campbell, “Membrane disruption by optically controlled microbubble cavitation,” Nat. Phys.1(2), 107–110 (2005). [CrossRef]
  12. C. D. Ohl, M. Arora, R. Ikink, N. de Jong, M. Versluis, M. Delius, and D. Lohse, “Sonoporation from jetting cavitation bubbles,” Biophys. J.91(11), 4285–4295 (2006). [CrossRef] [PubMed]
  13. G. Zhang, V. Budker, and J. A. Wolff, “High levels of foreign gene expression in hepatocytes after tail vein injections of naked plasmid DNA,” Hum. Gene Ther.10(10), 1735–1737 (1999). [CrossRef] [PubMed]
  14. G. Zhang, D. Vargo, V. Budker, N. Armstrong, S. Knechtle, and J. A. Wolff, “Expression of naked plasmid DNA injected into the afferent and efferent vessels of rodent and dog livers,” Hum. Gene Ther.8(15), 1763–1772 (1997). [CrossRef] [PubMed]
  15. J. B. Bell, K. M. Podetz-Pedersen, E. L. Aronovich, L. R. Belur, R. S. McIvor, and P. B. Hackett, “Preferential delivery of the Sleeping Beauty transposon system to livers of mice by hydrodynamic injection,” Nat. Protoc.2(12), 3153–3165 (2007). [CrossRef] [PubMed]
  16. F. Scherer, M. Anton, U. Schillinger, J. Henke, C. Bergemann, A. Krüger, B. Gänsbacher, and C. Plank, “Magnetofection: enhancing and targeting gene delivery by magnetic force in vitro and in vivo,” Gene Ther.9(2), 102–109 (2002). [CrossRef] [PubMed]
  17. M. Uchida, X. W. Li, P. Mertens, and H. O. Alpar, “Transfection by particle bombardment: delivery of plasmid DNA into mammalian cells using gene gun,” Biochim. Biophys. Acta1790(8), 754–764 (2009). [CrossRef] [PubMed]
  18. M. R. Capecchi, “High efficiency transformation by direct microinjection of DNA into cultured mammalian cells,” Cell22(2), 479–488 (1980). [CrossRef] [PubMed]
  19. C. M. Cuerrier, R. Lebel, and M. Grandbois, “Single cell transfection using plasmid decorated AFM probes,” Biochem. Biophys. Res. Commun.355(3), 632–636 (2007). [CrossRef] [PubMed]
  20. M. Tsukakoshi, S. Kurata, Y. Nomiya, Y. Ikawa, and T. Kasuya, “A Novel Method of DNA Transfection by Laser Microbeam Cell Surgery,” Appl. Phys. B35(3), 135–140 (1984). [CrossRef]
  21. Y. Arita, M. L. Torres-Mapa, W. M. Lee, T. Čižmár, P. Campbell, F. J. Gunn-Moore, and K. Dholakia, “Spatially optimized gene transfection by laser-induced breakdown of optically trapped nanoparticles,” Appl. Phys. Lett.98(9), 093702–093703 (2011). [CrossRef]
  22. H. He, S.-K. Kong, R. K.-Y. Lee, Y.-K. Suen, and K. T. Chan, “Targeted photoporation and transfection in human HepG2 cells by a fiber femtosecond laser at 1554 nm,” Opt. Lett.33(24), 2961–2963 (2008). [CrossRef] [PubMed]
  23. S. Sagi, T. Knoll, L. Trojan, A. Schaaf, P. Alken, and M. S. Michel, “Gene delivery into prostate cancer cells by holmium laser application,” Prostate Cancer Prostatic Dis.6(2), 127–130 (2003). [CrossRef] [PubMed]
  24. S. K. Mohanty, M. Sharma, and P. K. Gupta, “Laser-assisted microinjection into targeted animal cells,” Biotechnol. Lett.25(11), 895–899 (2003). [CrossRef] [PubMed]
  25. Y. A. Badr, M. A. Kereim, M. A. Yehia, O. O. Fouad, and A. Bahieldin, “Production of fertile transgenic wheat plants by laser micropuncture,” Photochem. Photobiol. Sci.4(10), 803–807 (2005). [CrossRef] [PubMed]
  26. S. Kurata and Y. Ikawa, “Novel method for substance injection into the cell by laser beam--a study of the injection volume,” Cell Struct. Funct.11(2), 205–207 (1986). [CrossRef] [PubMed]
  27. J. Baumgart, W. Bintig, A. Ngezahayo, S. Willenbrock, H. Murua Escobar, W. Ertmer, H. Lubatschowski, and A. Heisterkamp, “Quantified femtosecond laser based opto-perforation of living GFSHR-17 and MTH53 a cells,” Opt. Express16(5), 3021–3031 (2008). [CrossRef] [PubMed]
  28. C. Peng, R. E. Palazzo, and I. Wilke, “Laser intensity dependence of femtosecond near-infrared optoinjection,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.75(4), 041903–041911 (2007). [CrossRef] [PubMed]
  29. U. K. Tirlapur and K. König, “Targeted transfection by femtosecond laser,” Nature418(6895), 290–291 (2002). [CrossRef] [PubMed]
  30. A. Uchugonova, K. König, R. Bueckle, A. Isemann, and G. Tempea, “Targeted transfection of stem cells with sub-20 femtosecond laser pulses,” Opt. Express16(13), 9357–9364 (2008). [CrossRef] [PubMed]
  31. C. T. Brown, D. J. Stevenson, X. Tsampoula, C. McDougall, A. A. Lagatsky, W. Sibbett, F. J. Gunn-Moore, and K. Dholakia, “Enhanced operation of femtosecond lasers and applications in cell transfection,” J Biophotonics1(3), 183–199 (2008). [CrossRef] [PubMed]
  32. S. Sato, T. Ando, and M. Obara, “Optical fiber-based photomechanical gene transfer system for in vivo application,” Opt. Lett.36(23), 4545–4547 (2011). [CrossRef] [PubMed]
  33. D. J. Stevenson, F. J. Gunn-Moore, P. Campbell, and K. Dholakia, “Single cell optical transfection,” J. R. Soc. Interface7(47), 863–871 (2010). [CrossRef] [PubMed]
  34. A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett.24(4), 156–159 (1970). [CrossRef]
  35. A. Ashkin and J. M. Dziedzic, “Optical Levitation by Radiation Pressure,” Appl. Phys. Lett.19(8), 283–285 (1971). [CrossRef]
  36. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett.11(5), 288–290 (1986). [CrossRef] [PubMed]
  37. A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science235(4795), 1517–1520 (1987). [CrossRef] [PubMed]
  38. V. Bormuth, A. Jannasch, M. Ander, C. M. van Kats, A. van Blaaderen, J. Howard, and E. Schäffer, “Optical trapping of coated microspheres,” Opt. Express16(18), 13831–13844 (2008). [CrossRef] [PubMed]
  39. H. D. Soule, J. Vazguez, A. Long, S. Albert, and M. Brennan, “A human cell line from a pleural effusion derived from a breast carcinoma,” J. Natl. Cancer Inst.51(5), 1409–1416 (1973). [PubMed]
  40. W. Sellmeier, “Zur Erklärung der abnormen Farbenfolge im Spectrum einiger Substanzen,” Annalen der Physik und Chemie219(6), 272–282 (1871). [CrossRef]
  41. E. Hecht, Optics (Addison-Wesley, San Francisco, 2001).
  42. G. Ghosh, “Sellmeier coefficients and dispersion of thermo-optic coefficients for some optical glasses,” Appl. Opt.36(7), 1540–1546 (1997). [CrossRef] [PubMed]
  43. G. Kloos, Matrix Methods for Optical Layout (SPIE Publications, Washington, 2007).
  44. D. Stevenson, B. Agate, X. Tsampoula, P. Fischer, C. T. A. Brown, W. Sibbett, A. Riches, F. Gunn-Moore, and K. Dholakia, “Femtosecond optical transfection of cells: viability and efficiency,” Opt. Express14(16), 7125–7133 (2006). [CrossRef] [PubMed]
  45. W. Tao, J. Wilkinson, E. J. Stanbridge, and M. W. Berns, “Direct gene transfer into human cultured cells facilitated by laser micropuncture of the cell membrane,” Proc. Natl. Acad. Sci. U.S.A.84(12), 4180–4184 (1987). [CrossRef] [PubMed]
  46. Y. Guo, H. Liang, and M. W. Berns, “Laser-mediated gene transfer in rice,” Physiol. Plant.93(1), 19–24 (1995). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited