OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 4, Iss. 9 — Sep. 1, 2013
  • pp: 1673–1682

Super-resolution scanning laser microscopy through virtually structured detection

Rong-Wen Lu, Ben-Quan Wang, Qiu-Xiang Zhang, and Xin-Cheng Yao  »View Author Affiliations


Biomedical Optics Express, Vol. 4, Issue 9, pp. 1673-1682 (2013)
http://dx.doi.org/10.1364/BOE.4.001673


View Full Text Article

Enhanced HTML    Acrobat PDF (1961 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

High resolution microscopy is essential for advanced study of biological structures and accurate diagnosis of medical diseases. The spatial resolution of conventional microscopes is light diffraction limited. Structured illumination has been extensively explored to break the diffraction limit in wide field light microscopy. However, deployable application of the structured illumination in scanning laser microscopy is challenging due to the complexity of the illumination system and possible phase errors in sequential illumination patterns required for super-resolution reconstruction. We report here a super-resolution scanning laser imaging system which employs virtually structured detection (VSD) to break the diffraction limit. Without the complexity of structured illumination, VSD provides an easy, low-cost and phase-artifact free strategy to achieve super-resolution in scanning laser microscopy.

© 2013 OSA

OCIS Codes
(100.6640) Image processing : Superresolution
(110.3080) Imaging systems : Infrared imaging
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(180.5810) Microscopy : Scanning microscopy

ToC Category:
Microscopy

History
Original Manuscript: June 17, 2013
Revised Manuscript: August 12, 2013
Manuscript Accepted: August 14, 2013
Published: August 19, 2013

Virtual Issues
Bio-Optics: Design and Applications (2013) Biomedical Optics Express

Citation
Rong-Wen Lu, Ben-Quan Wang, Qiu-Xiang Zhang, and Xin-Cheng Yao, "Super-resolution scanning laser microscopy through virtually structured detection," Biomed. Opt. Express 4, 1673-1682 (2013)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-4-9-1673


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett.19(11), 780–782 (1994). [CrossRef] [PubMed]
  2. S. Berning, K. I. Willig, H. Steffens, P. Dibaj, and S. W. Hell, “Nanoscopy in a living mouse brain,” Science335(6068), 551 (2012). [CrossRef] [PubMed]
  3. M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods3(10), 793–796 (2006). [CrossRef] [PubMed]
  4. E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science313(5793), 1642–1645 (2006). [CrossRef] [PubMed]
  5. M. F. Juette, T. J. Gould, M. D. Lessard, M. J. Mlodzianoski, B. S. Nagpure, B. T. Bennett, S. T. Hess, and J. Bewersdorf, “Three-dimensional sub-100 nm resolution fluorescence microscopy of thick samples,” Nat. Methods5(6), 527–529 (2008). [CrossRef] [PubMed]
  6. S. A. Jones, S. H. Shim, J. He, and X. Zhuang, “Fast, three-dimensional super-resolution imaging of live cells,” Nat. Methods8(6), 499–505 (2011). [CrossRef] [PubMed]
  7. S. H. Shim, C. Xia, G. Zhong, H. P. Babcock, J. C. Vaughan, B. Huang, X. Wang, C. Xu, G. Q. Bi, and X. Zhuang, “Super-resolution fluorescence imaging of organelles in live cells with photoswitchable membrane probes,” Proc. Natl. Acad. Sci. U.S.A.109(35), 13978–13983 (2012). [CrossRef] [PubMed]
  8. H. Shroff, C. G. Galbraith, J. A. Galbraith, H. White, J. Gillette, S. Olenych, M. W. Davidson, and E. Betzig, “Dual-color superresolution imaging of genetically expressed probes within individual adhesion complexes,” Proc. Natl. Acad. Sci. U.S.A.104(51), 20308–20313 (2007). [CrossRef] [PubMed]
  9. M. Bertero, P. Brianzi, and E. Pike, “Super-resolution in confocal scanning microscopy,” Inverse Probl.3(2), 195–212 (1987). [CrossRef]
  10. M. Bertero, P. Boccacci, M. Defrise, C. De Mol, and E. Pike, “Super-resolution in confocal scanning microscopy: II. The incoherent case,” Inverse Probl.5(4), 441–461 (1989). [CrossRef]
  11. M. Defrise and C. Mol, “Super-resolution in confocal scanning microscopy: generalized inversion formulae,” Inverse Probl.8(2), 175–185 (1992). [CrossRef]
  12. M. G. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc.198(2), 82–87 (2000). [CrossRef] [PubMed]
  13. M. G. Gustafsson, “Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution,” Proc. Natl. Acad. Sci. U.S.A.102(37), 13081–13086 (2005). [CrossRef] [PubMed]
  14. M. G. Gustafsson, L. Shao, P. M. Carlton, C. J. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J.94(12), 4957–4970 (2008). [CrossRef] [PubMed]
  15. D. Débarre, E. J. Botcherby, M. J. Booth, and T. Wilson, “Adaptive optics for structured illumination microscopy,” Opt. Express16(13), 9290–9305 (2008). [CrossRef] [PubMed]
  16. D. Karadaglić and T. Wilson, “Image formation in structured illumination wide-field fluorescence microscopy,” Micron39(7), 808–818 (2008). [CrossRef] [PubMed]
  17. J. Lu, W. Min, J. A. Conchello, X. S. Xie, and J. W. Lichtman, “Super-resolution laser scanning microscopy through spatiotemporal modulation,” Nano Lett.9(11), 3883–3889 (2009). [CrossRef] [PubMed]
  18. D. M. Rector, D. M. Ranken, and J. S. George, “High-performance confocal system for microscopic or endoscopic applications,” Methods30(1), 16–27 (2003). [CrossRef] [PubMed]
  19. M. Rajadhyaksha, R. R. Anderson, and R. H. Webb, “Video-rate confocal scanning laser microscope for imaging human tissues in vivo,” Appl. Opt.38(10), 2105–2115 (1999). [CrossRef] [PubMed]
  20. A. Dubra, Y. Sulai, J. L. Norris, R. F. Cooper, A. M. Dubis, D. R. Williams, and J. Carroll, “Noninvasive imaging of the human rod photoreceptor mosaic using a confocal adaptive optics scanning ophthalmoscope,” Biomed. Opt. Express2(7), 1864–1876 (2011). [CrossRef] [PubMed]
  21. M. J. Booth, M. A. Neil, R. Juskaitis, and T. Wilson, “Adaptive aberration correction in a confocal microscope,” Proc. Natl. Acad. Sci. U.S.A.99(9), 5788–5792 (2002). [CrossRef] [PubMed]
  22. T. Y. Chui, D. A. Vannasdale, and S. A. Burns, “The use of forward scatter to improve retinal vascular imaging with an adaptive optics scanning laser ophthalmoscope,” Biomed. Opt. Express3(10), 2537–2549 (2012). [CrossRef] [PubMed]
  23. T. Wilson and A. R. Carlini, “Size of the detector in confocal imaging systems,” Opt. Lett.12(4), 227–229 (1987). [CrossRef] [PubMed]
  24. M. Bertero and P. Boccacci, “Super-resolution in computational imaging,” Micron34(6-7), 265–273 (2003). [CrossRef] [PubMed]
  25. M. G. L. Gustafsson, D. A. Agard, and J. W. Sedat, “Doubling the lateral resolution of wide-field fluorescence microscopy using structured illumination,” Proc. SPIE3919, 141–150 (2000). [CrossRef]
  26. S. E. Nilsson, “An Electron Microscopic Classification of the Retinal Receptors of the Leopard Frog (Rana Pipiens),” J. Ultrastruct. Res.10(5-6), 390–416 (1964). [CrossRef] [PubMed]
  27. P. A. Liebman and G. Entine, “Visual pigments of frog and tadpole (Rana pipiens),” Vision Res.8(7), 761–775 (1968). [CrossRef] [PubMed]
  28. X. C. Yao and Y. B. Zhao, “Optical dissection of stimulus-evoked retinal activation,” Opt. Express16(17), 12446–12459 (2008). [CrossRef] [PubMed]
  29. X. C. Yao, A. Yamauchi, B. Perry, and J. S. George, “Rapid optical coherence tomography and recording functional scattering changes from activated frog retina,” Appl. Opt.44(11), 2019–2023 (2005). [CrossRef] [PubMed]
  30. S. A. Shroff, J. R. Fienup, and D. R. Williams, “Phase-shift estimation in sinusoidally illuminated images for lateral superresolution,” J. Opt. Soc. Am. A26(2), 413–424 (2009). [CrossRef] [PubMed]
  31. S. A. Shroff, J. R. Fienup, and D. R. Williams, “Lateral superresolution using a posteriori phase shift estimation for a moving object: experimental results,” J. Opt. Soc. Am. A27(8), 1770–1782 (2010). [CrossRef] [PubMed]
  32. M. A. Neil, R. Juskaitis, and T. Wilson, “Method of obtaining optical sectioning by using structured light in a conventional microscope,” Opt. Lett.22(24), 1905–1907 (1997). [CrossRef] [PubMed]
  33. T. Wilson, Confocal microscopy (Academic Press, London, 1990)
  34. J. Liang, D. R. Williams, and D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A14(11), 2884–2892 (1997). [CrossRef] [PubMed]
  35. D. Merino, J. L. Duncan, P. Tiruveedhula, and A. Roorda, “Observation of cone and rod photoreceptors in normal subjects and patients using a new generation adaptive optics scanning laser ophthalmoscope,” Biomed. Opt. Express2(8), 2189–2201 (2011). [CrossRef] [PubMed]
  36. R. J. Zawadzki, S. M. Jones, S. Pilli, S. Balderas-Mata, D. Y. Kim, S. S. Olivier, and J. S. Werner, “Integrated adaptive optics optical coherence tomography and adaptive optics scanning laser ophthalmoscope system for simultaneous cellular resolution in vivo retinal imaging,” Biomed. Opt. Express2(6), 1674–1686 (2011). [CrossRef] [PubMed]
  37. Q. X. Zhang, R. W. Lu, C. A. Curcio, and X. C. Yao, “In vivo confocal intrinsic optical signal identification of localized retinal dysfunction,” Invest. Ophthalmol. Vis. Sci.53(13), 8139–8145 (2012). [CrossRef] [PubMed]
  38. Q. X. Zhang, R. W. Lu, Y. G. Li, and X. C. Yao, “In vivo confocal imaging of fast intrinsic optical signals correlated with frog retinal activation,” Opt. Lett.36(23), 4692–4694 (2011). [CrossRef] [PubMed]
  39. Q. X. Zhang, J. Y. Wang, L. Liu, and X. C. Yao, “Microlens array recording of localized retinal responses,” Opt. Lett.35(22), 3838–3840 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited