OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 5, Iss. 1 — Jan. 1, 2014
  • pp: 208–222

Pulsetrain-burst mode, ultrafast-laser interactions with 3D viable cell cultures as a model for soft biological tissues

Zuoming Qian, Aghapi Mordovanakis, Joshua E. Schoenly, Andrés Covarrubias, Yuanfeng Feng, Lothar Lilge, and Robin S. Marjoribanks  »View Author Affiliations

Biomedical Optics Express, Vol. 5, Issue 1, pp. 208-222 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1932 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A 3D living-cell culture in hydrogel has been developed as a standardized low-tensile-strength tissue proxy for study of ultrafast, pulsetrain-burst laser-tissue interactions. The hydrogel is permeable to fluorescent biomarkers and optically transparent, allowing viable and necrotic cells to be imaged in 3D by confocal microscopy. Good cell-viability allowed us to distinguish between typical cell mortality and delayed subcellular tissue damage (e.g., apoptosis and DNA repair complex formation), caused by laser irradiation. The range of necrosis depended on laser intensity, but not on pulsetrain-burst duration. DNA double-strand breaks were quantified, giving a preliminary upper limit for genetic damage following laser treatment.

© 2013 Optical Society of America

OCIS Codes
(140.3440) Lasers and laser optics : Laser-induced breakdown
(170.1020) Medical optics and biotechnology : Ablation of tissue
(170.2520) Medical optics and biotechnology : Fluorescence microscopy
(320.7090) Ultrafast optics : Ultrafast lasers
(350.3390) Other areas of optics : Laser materials processing
(160.1435) Materials : Biomaterials

ToC Category:
Laser-Tissue Interactions

Original Manuscript: October 7, 2013
Revised Manuscript: December 5, 2013
Manuscript Accepted: December 7, 2013
Published: December 13, 2013

Zuoming Qian, Aghapi Mordovanakis, Joshua E. Schoenly, Andrés Covarrubias, Yuanfeng Feng, Lothar Lilge, and Robin S. Marjoribanks, "Pulsetrain-burst mode, ultrafast-laser interactions with 3D viable cell cultures as a model for soft biological tissues," Biomed. Opt. Express 5, 208-222 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. Juhasz, H. Frieder, R. M. Kurtz, C. Horvath, J. F. Bille, and G. Mourou, “Corneal refractive surgery with femtosecond lasers,” IEEE J. Sel. Top. Quantum Electron.5(4), 902–910 (1999). [CrossRef]
  2. I. Ratkay-Traub, I. E. Ferincz, T. Juhasz, R. M. Kurtz, and R. R. Krueger, “First clinical results with the femtosecond neodynium-glass laser in refractive surgery,” J. Refract. Surg.19(2), 94–103 (2003). [PubMed]
  3. P. Kim, G. L. Sutton, and D. S. Rootman, “Applications of the femtosecond laser in corneal refractive surgery,” Curr. Opin. Ophthalmol.22(4), 238–244 (2011). [CrossRef] [PubMed]
  4. G. Sutton, S. J. Bali, and C. Hodge, “Femtosecond cataract surgery: transitioning to laser cataract,” Curr. Opin. Ophthalmol.24(1), 3–8 (2013). [CrossRef] [PubMed]
  5. C. L. Hoy, W. N. Everett, M. Yildirim, J. Kobler, S. M. Zeitels, and A. Ben-Yakar, “Towards endoscopic ultrafast laser microsurgery of vocal folds,” J. Biomed. Opt.17(3), 038002 (2012). [CrossRef] [PubMed]
  6. D. D. Lo, M. A. Mackanos, M. T. Chung, J. S. Hyun, D. T. Montoro, M. Grova, C. J. Liu, J. Wang, D. Palanker, A. J. Connolly, M. T. Longaker, C. H. Contag, and D. C. Wan, “Femtosecond plasma mediated laser ablation has advantages over mechanical osteotomy of cranial bone,” Lasers Surg. Med.44(10), 805–814 (2012). [CrossRef] [PubMed]
  7. R. G. McCaughey, H. Sun, V. S. Rothholtz, T. Juhasz, and B. J. F. Wong, “Femtosecond laser ablation of the stapes,” J. Biomed. Opt.14(2), 024040 (2009). [CrossRef] [PubMed]
  8. H. C. Yalcin, A. Shekhar, N. Nishimura, A. A. Rane, C. B. Schaffer, and J. T. Butcher, “Two-photon microscopy-guided femtosecond-laser photoablation of avian cardiogenesis: noninvasive creation of localized heart defects,” Am. J. Physiol. Heart Circ. Physiol.299(5), H1728–H1735 (2010). [CrossRef] [PubMed]
  9. K. Kuetemeyer, G. Kensah, M. Heidrich, H. Meyer, U. Martin, I. Gruh, and A. Heisterkamp, “Two-photon induced collagen cross-linking in bioartificial cardiac tissue,” Opt. Express19(17), 15996–16007 (2011). [CrossRef] [PubMed]
  10. F. Schelle, S. Polz, H. Haloui, A. Braun, C. Dehn, M. Frentzen, and J. Meister, “Ultrashort pulsed laser (USPL) application in dentistry: basic investigations of ablation rates and thresholds on oral hard tissue and restorative materials,” Laser Med. Sci.2013, 1–9 (2013)
  11. M. H. Niemz, “Investigation and Spectral-Analysis of the Plasma-Induced Ablation Mechanism of Dental Hydroxyapatite,” Appl. Phys. B58(4), 273–281 (1994). [CrossRef]
  12. A. Vogel, J. Noack, G. Huttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B81(8), 1015–1047 (2005). [CrossRef]
  13. V. Nuzzo, I. Maxwell, S. Chung, E. Mazur, and A. Heisterkamp, “Subcellular Surgery and Nanoneurosurgery Using Femtosecond Laser Pulses,” Nato. Sci. Peace Sec. B.2011, 203–218 (2011)
  14. A. Tunnermann and J. Limpert, “Ultrafast Fiber Laser Technology: Status and Prospects,” Laser Resonators and Beam Control XII 7579((2010)
  15. P. S. Tsai, P. Blinder, B. J. Migliori, J. Neev, Y. Jin, J. A. Squier, and D. Kleinfeld, “Plasma-mediated ablation: an optical tool for submicrometer surgery on neuronal and vascular systems,” Curr. Opin. Biotechnol.20(1), 90–99 (2009). [CrossRef] [PubMed]
  16. A. Vogel and V. Venugopalan, “Mechanisms of pulsed laser ablation of biological tissues,” Chem. Rev.103(2), 577–644 (2003). [CrossRef] [PubMed]
  17. D. Manstein, G. S. Herron, R. K. Sink, H. Tanner, and R. R. Anderson, “Fractional photothermolysis: A new concept for cutaneous remodeling using microscopic patterns of thermal injury,” Lasers Surg. Med.34(5), 426–438 (2004). [CrossRef] [PubMed]
  18. D. Manstein and H.-J. Laubach, “Fractional Photothermolysis,” in Lasers in Dermatology and Medicine K. Nouri, Ed., pp. 123–147, Springer, New York (2011).
  19. L. McKinney, F. Frank, D. Graper, J. Dean, P. Forrester, M. Rioblanc, M. Nantel, and R. Marjoribanks, “Mitigating Intrinsic Defects and Laser Damage using Pulsetrain-burst (>100 MHZ) Ultrafast Laser Processing,” Proc. SPIE5970,14 (2005).
  20. P. R. Herman, A. Oettl, K. P. Chen, and R. S. Marjoribanks, “Laser micromachining of 'transparent' fused silica with 1-ps pulses and pulse trains,” Comm. Biomed. Appl. Ultrafast Lasers.3616, 148–155 (1999). [CrossRef]
  21. R. R. Gattass, L. R. Cerami, and E. Mazur, “Micromachining of bulk glass with bursts of femtosecond laser pulses at variable repetition rates,” Opt. Express14(12), 5279–5284 (2006). [CrossRef] [PubMed]
  22. C. Dille, P. Kaifosh, P. Forrester, A. G. Mordovanakis, L. Lilge, and R. Marjoribanks, “Ablation of Hard Dental Tissue Using Ultrashort Pulsetrain-Burst (>100MHz) Laser,” in CLEO, p. JThE67, Optical Society of America, Baltimore, Maryland (2009).
  23. R. R. Anderson, W. Farinelli, H. Laubach, D. Manstein, A. N. Yaroslavsky, J. Gubeli, K. Jordan, G. R. Neil, M. Shinn, W. Chandler, G. P. Williams, S. V. Benson, D. R. Douglas, and H. F. Dylla, “Selective photothermolysis of lipid-rich tissues: a free electron laser study,” Lasers Surg. Med.38(10), 913–919 (2006). [CrossRef] [PubMed]
  24. G. Edwards, R. Logan, M. Copeland, L. Reinisch, J. Davidson, B. Johnson, R. Maciunas, M. Mendenhall, R. Ossoff, J. Tribble, J. Werkhaven, and D. O’Day, “Tissue ablation by a free-electron laser tuned to the amide II band,” Nature371(6496), 416–419 (1994). [CrossRef] [PubMed]
  25. L. Reinisch and R. H. Ossoff, “Plasma ablation of hard tissue by the free-electron laser,” Proc. SPIE1854145 (1993).
  26. J. L. Drury and D. J. Mooney, “Hydrogels for tissue engineering: scaffold design variables and applications,” Biomaterials24(24), 4337–4351 (2003). [CrossRef] [PubMed]
  27. B. V. Slaughter, S. S. Khurshid, O. Z. Fisher, A. Khademhosseini, and N. A. Peppas, “Hydrogels in Regenerative Medicine,” Adv. Mater.21(32-33), 3307–3329 (2009). [CrossRef] [PubMed]
  28. M. A. El-Brawany, D. K. Nassiri, G. Terhaar, A. Shaw, I. Rivens, and K. Lozhken, “Measurement of thermal and ultrasonic properties of some biological tissues,” J. Med. Eng. Technol.33(3), 249–256 (2009). [CrossRef] [PubMed]
  29. V. Normand, D. L. Lootens, E. Amici, K. P. Plucknett, and P. Aymard, “New insight into agarose gel mechanical properties,” Biomacromolecules1(4), 730–738 (2000). [CrossRef] [PubMed]
  30. A. Vogel and V. Venugopalan, “Pulsed Laser Ablation of Soft Biological Tissues,” in Optical-Thermal Reponse of Laser-Irradiated Tissue A. J. Welch and M. J. C. van Gemert, Eds., (Springer Science + Business Media B. V. 2011), pp. 551–615.
  31. K. R. Shull, “Materials Science: A Hard Concept in Soft Matter,” Nature489(7414), 36–37 (2012). [CrossRef] [PubMed]
  32. J. Y. Sun, X. H. Zhao, W. R. K. Illeperuma, O. Chaudhuri, K. H. Oh, D. J. Mooney, J. J. Vlassak, and Z. G. Suo, “Highly stretchable and tough hydrogels,” Nature489(7414), 133–136 (2012). [CrossRef] [PubMed]
  33. F. G. Pérez-Gutiérrez, S. Camacho-López, and G. Aguilar, “Time-resolved study of the mechanical response of tissue phantoms to nanosecond laser pulses,” J. Biomed. Opt.16(11), 115001 (2011). [CrossRef] [PubMed]
  34. A. V. Cherian and K. R. Rau, “Pulsed-laser-induced damage in rat corneas: time-resolved imaging of physical effects and acute biological response,” J. Biomed. Opt.13(2), 024009 (2008). [CrossRef] [PubMed]
  35. M. F. Ali, “Topical delivery and photodynamic evaluation of a multivesicular liposomal Rose Bengal,” Lasers Med. Sci.26(2), 267–275 (2011). [CrossRef] [PubMed]
  36. C. Sramek, L. S. Leung, T. Leng, J. Brown, Y. M. Paulus, G. Schuele, and D. Palanker, “Improving the therapeutic window of retinal photocoagulation by spatial and temporal modulation of the laser beam,” J. Biomed. Opt.16(2), 028004 (2011). [CrossRef] [PubMed]
  37. F. Xu, J. Celli, I. Rizvi, S. Moon, T. Hasan, and U. Demirci, “A three-dimensional in vitro ovarian cancer coculture model using a high-throughput cell patterning platform,” Biotechnol. J.6(2), 204–212 (2011). [CrossRef] [PubMed]
  38. R. Marjoribanks, C. Dille, J. E. Schoenly, L. McKinney, A. G. Mordovanakis, P. Kaifosh, P. Forrester, Z. Qian, A. Covarrubias, Y. Feng, and L. Lilge, “Ablation and thermal effects in treatment of hard and soft materials and biotissues using ultrafast-laser pulse-train bursts,” Photon. Lasers Med.1(3), 155–169 (2012). [CrossRef]
  39. R. Mocharla, H. Mocharla, and M. E. Hodes, “A novel, sensitive fluorometric staining technique for the detection of DNA in RNA preparations,” Nucleic Acids Res.15(24), 10589 (1987). [CrossRef] [PubMed]
  40. M. J. Waring, “Complex Formation between Ethidium Bromide and Nucleic Acids,” J. Mol. Biol.13(1), 269–282 (1965). [CrossRef] [PubMed]
  41. E. P. Rogakou, D. R. Pilch, A. H. Orr, V. S. Ivanova, and W. M. Bonner, “DNA Double-stranded Breaks Induce Histone H2AX Phosphorylation on Serine 139,” J. Biol. Chem.273(10), 5858–5868 (1998). [CrossRef] [PubMed]
  42. N. Tinne, E. Lubking, H. Lubatschowski, A. Kruger, and T. Ripken, “The influence of a spatial and temporal pulse-overlap on the laser-tissue-interaction of modern ophthalmic laser systems,” Biomed. Tech.57(Suppl 1),302–305 (2012)
  43. Y. Gong, L. He, J. Li, Q. Zhou, Z. Ma, C. Gao, and J. Shen, “Hydrogel-filled polylactide porous scaffolds for cartilage tissue engineering,” J. Biomed. Mater. Res. B Appl. Biomater.82B(1), 192–204 (2007). [CrossRef] [PubMed]
  44. J. P. Gong, Y. Katsuyama, T. Kurokawa, and Y. Osada, “Double-network hydrogels with extremely high mechanical strength,” Adv. Mater.15(14), 1155–1158 (2003)
  45. N. K. Simha, C. S. Carlson, and J. L. Lewis, “Evaluation of fracture toughness of cartilage by micropenetration,” J. Mater. Sci. Mater. Med.15(5), 631–639 (2004). [CrossRef] [PubMed]
  46. R. Gauvin, R. Parenteau-Bareil, D. Larouche, H. Marcoux, F. Bisson, A. Bonnet, F. A. Auger, S. Bolduc, and L. Germain, “Dynamic mechanical stimulations induce anisotropy and improve the tensile properties of engineered tissues produced without exogenous scaffolding,” Acta Biomater.7(9), 3294–3301 (2011). [CrossRef] [PubMed]
  47. J. S. D’Souza, J. A. Dharmadhikari, A. K. Dharmadhikari, B. J. Rao, and D. Mathur, “Effect of Intense, Ultrashort Laser Pulses on DNA Plasmids in their Native State: Strand Breakages Induced by In Situ Electrons and Radicals,” Phys. Rev. Lett.106(11), 118101 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited