OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 5, Iss. 1 — Jan. 1, 2014
  • pp: 78–92

Towards clinically translatable NIR fluorescence molecular guidance for colonoscopy

P. Beatriz Garcia-Allende, Jürgen Glatz, Maximilian Koch, Jolien J. Tjalma, Elmire Hartmans, Anton G.T. Terwisscha van Scheltinga, Panagiotis Symvoulidis, Gooitzen M. van Dam, Wouter B. Nagengast, and Vasilis Ntziachristos  »View Author Affiliations


Biomedical Optics Express, Vol. 5, Issue 1, pp. 78-92 (2014)
http://dx.doi.org/10.1364/BOE.5.000078


View Full Text Article

Enhanced HTML    Acrobat PDF (2233 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

White-light surveillance colonoscopy is the standard of care for the detection and removal of premalignant lesions to prevent colorectal cancer, and the main screening recommendation following treatment for recurrence detection. However, it lacks sufficient diagnostic yield, exhibits unacceptable adenoma miss-rates and is not capable of revealing functional and morphological information of the detected lesions. Fluorescence molecular guidance in the near-infrared (NIR) is expected to have outstanding relevance regarding early lesion detection and heterogeneity characterization within and among lesions in these interventional procedures. Thereby, superficial and sub-surface tissue biomarkers can be optimally visualized due to a minimization of tissue attenuation and autofluorescence by comparison with the visible, which simultaneously enhance tissue penetration and assure minimal background. At present, this potential is challenged by the difficulty associated with the clinical propagation of disease-specific contrast agents and the absence of a commercially available endoscope that is capable of acquiring wide-field, NIR fluorescence at video-rates. We propose two alternative flexible endoscopic fluorescence imaging methods, each based on a CE certified commercial, clinical grade endoscope, and the employment of an approved monoclonal antibody labeled with a clinically applicable NIR fluorophore. Pre-clinical validation of these two strategies that aim at bridging NIR fluorescence molecular guidance to clinical translation is demonstrated in this study.

© 2013 Optical Society of America

OCIS Codes
(170.2150) Medical optics and biotechnology : Endoscopic imaging
(170.2680) Medical optics and biotechnology : Gastrointestinal

ToC Category:
Optics in Cancer Research

History
Original Manuscript: June 14, 2013
Revised Manuscript: September 19, 2013
Manuscript Accepted: October 11, 2013
Published: December 4, 2013

Virtual Issues
Optical Molecular Probes, Imaging, and Drug Delivery (2013) Biomedical Optics Express

Citation
P. Beatriz Garcia-Allende, Jürgen Glatz, Maximilian Koch, Jolien J. Tjalma, Elmire Hartmans, Anton G.T. Terwisscha van Scheltinga, Panagiotis Symvoulidis, Gooitzen M. van Dam, Wouter B. Nagengast, and Vasilis Ntziachristos, "Towards clinically translatable NIR fluorescence molecular guidance for colonoscopy," Biomed. Opt. Express 5, 78-92 (2014)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-5-1-78


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. Herszényi and Z. Tulassay, “Epidemiology of gastrointestinal and liver tumors,” Eur. Rev. Med. Pharmacol. Sci.14(4), 249–258 (2010). [PubMed]
  2. S. Misale, R. Yaeger, S. Hobor, E. Scala, M. Janakiraman, D. Liska, E. Valtorta, R. Schiavo, M. Buscarino, G. Siravegna, K. Bencardino, A. Cercek, C. T. Chen, S. Veronese, C. Zanon, A. Sartore-Bianchi, M. Gambacorta, M. Gallicchio, E. Vakiani, V. Boscaro, E. Medico, M. Weiser, S. Siena, F. Di Nicolantonio, D. Solit, and A. Bardelli, “Emergence of KRAS mutations and acquired resistance to anti-EGFR therapy in colorectal cancer,” Nature486(7404), 532–536 (2012). [PubMed]
  3. T. E. Goranova, M. Ohue, Y. Shimoharu, and K. Kato, “Dynamics of cancer cell subpopulations in primary and metastatic colorectal tumors,” Clin. Exp. Metastasis28(5), 427–435 (2011). [CrossRef] [PubMed]
  4. S. E. Baldus, K. L. Schaefer, R. Engers, D. Hartleb, N. H. Stoecklein, and H. E. Gabbert, “Prevalence and heterogeneity of KRAS, BRAF, and PIK3CA mutations in primary colorectal adenocarcinomas and their corresponding metastases,” Clin. Cancer Res.16(3), 790–799 (2010). [CrossRef] [PubMed]
  5. E. M. Stoffel, D. K. Turgeon, D. H. Stockwell, L. Zhao, D. P. Normolle, M. K. Tuck, R. S. Bresalier, N. E. Marcon, J. A. Baron, M. T. Ruffin, D. E. Brenner, S. Syngal, and Great Lakes-New England Clinical Epidemiology and Validation Center of the Early Detection Research Network, “Missed adenomas during colonoscopic surveillance in individuals with Lynch syndrome (hereditary nonpolyposis colorectal cancer),” Cancer Prev. Res. (Phila.)1(6), 470–475 (2008). [CrossRef] [PubMed]
  6. L. M. Wong Kee Song, D. G. Adler, B. Chand, J. D. Conway, J. M. B. Croffie, J. A. Disario, D. S. Mishkin, R. J. Shah, L. Somogyi, W. M. Tierney, B. T. Petersen, and ASGE Technology Committee, “Chromoendoscopy,” Gastrointest. Endosc.66(4), 639–649 (2007). [CrossRef] [PubMed]
  7. L. M. W. K. Song, D. G. Adler, J. D. Conway, D. L. Diehl, F. A. Farraye, S. V. Kantsevoy, R. Kwon, P. Mamula, B. Rodriguez, R. J. Shah, W. M. Tierney, and ASGE Technology Committee, “Narrow band imaging and multiband imaging,” Gastrointest. Endosc.67(4), 581–589 (2008). [CrossRef] [PubMed]
  8. L. M. W. K. Song, S. Banerjee, D. Desilets, D. L. Diehl, F. A. Farraye, V. Kaul, S. R. Kethu, R. S. Kwon, P. Mamula, M. C. Pedrosa, S. A. Rodriguez, W. M. Tierney, and ASGE Technology Committee, “Autofluorescence imaging,” Gastrointest. Endosc.73(4), 647–650 (2011). [CrossRef] [PubMed]
  9. R. Banerjee and D. N. Reddy, “Advances in endoscopic imaging: Advantages and limitations,” J. Dig. Endosc.3(5), 7–12 (2012). [CrossRef]
  10. T. Ahmed, J. Monti, and B. Lashner, “Random versus targeted biopsies for colorectal cancer surveillance in inflammatory bowel disease,” Gastroenterol Hepatol (N Y)6(7), 438–442 (2010). [PubMed]
  11. S. A. Hilderbrand and R. Weissleder, “Near-infrared fluorescence: application to in vivo molecular imaging,” Curr. Opin. Chem. Biol.14(1), 71–79 (2010). [CrossRef] [PubMed]
  12. P. L. Hsiung, J. Hardy, S. Friedland, R. Soetikno, C. B. Du, A. P. Wu, P. Sahbaie, J. M. Crawford, A. W. Lowe, C. H. Contag, and T. D. Wang, “Detection of colonic dysplasia in vivo using a targeted heptapeptide and confocal microendoscopy,” Nat. Med.14(4), 454–458 (2008). [CrossRef] [PubMed]
  13. M. V. Marshall, D. Draney, E. M. Sevick-Muraca, and D. M. Olive, “Single-dose intravenous toxicity study of IRDye 800CW in Sprague-Dawley rats,” Mol. Imaging Biol.12(6), 583–594 (2010). [CrossRef] [PubMed]
  14. A. G. Terwisscha van Scheltinga, G. M. van Dam, W. B. Nagengast, V. Ntziachristos, H. Hollema, J. L. Herek, C. P. Schröder, J. G. Kosterink, M. N. Lub-de Hoog, and E. G. de Vries, “Intraoperative near-infrared fluorescence tumor imaging with vascular endothelial growth factor and human epidermal growth factor receptor 2 targeting antibodies,” J. Nucl. Med.52(11), 1778–1785 (2011). [CrossRef] [PubMed]
  15. E. J. Blok, P. J. K. Kuppen, J. E. M. van Leeuwen, and C. F. M. Sier, “Cytoplasmic overexpression of HER2: a key factor in colorectal cancer,” Clin Med Insights Oncol7, 41–51 (2013). [CrossRef] [PubMed]
  16. M. Goetz, M. S. Hoetker, M. Diken, P. R. Galle, and R. Kiesslich, “In vivo molecular imaging with cetuximab, an anti-EGFR antibody, for prediction of response in xenograft models of human colorectal cancer,” Endoscopy45(6), 469–477 (2013). [CrossRef] [PubMed]
  17. W. Scheuer, G. M. van Dam, M. Dobosz, M. Schwaiger, and V. Ntziachristos, “Drug-based optical agents: Infiltrating clinics at lower risk,” Sci. Transl. Med.4, 134ps11 (2012).
  18. E. M. Sevick-Muraca, W. J. Akers, B. P. Joshi, G. D. Luker, C. S. Cutler, L. J. Marnett, C. H. Contag, T. D. Wang, and A. Azhdarinia, “Advancing the translation of optical imaging agents for clinical imaging,” Biomed. Opt. Express4(1), 160–170 (2013). [CrossRef] [PubMed]
  19. Z. Liu, S. J. Miller, B. P. Joshi, and T. D. Wang, “In vivo targeting of colonic dysplasia on fluorescence endoscopy with near-infrared octapeptide,” Gut62(3), 395–403 (2013). [CrossRef] [PubMed]
  20. N. Thekkek, M. C. Pierce, M. H. Lee, A. D. Polydorides, R. M. Flores, S. Anandasabapathy, and R. R. Richards-Kortum, “Modular video endoscopy for in vivo cross-polarized and vital-dye fluorescence imaging of Barrett’s-associated neoplasia,” J. Biomed. Opt.18(2), 026007 (2013). [CrossRef] [PubMed]
  21. C. M. Lee, C. J. Engelbrecht, T. D. Soper, F. Helmchen, and E. J. Seibel, “Scanning fiber endoscopy with highly flexible, 1 mm catheterscopes for wide-field, full-color imaging,” J. Biophotonics3(5-6), 385–407 (2010). [CrossRef] [PubMed]
  22. S. J. Miller, C. M. Lee, B. P. Joshi, A. Gaustad, E. J. Seibel, and T. D. Wang, “Targeted detection of murine colonic dysplasia in vivo with flexible multispectral scanning fiber endoscopy,” J. Biomed. Opt.17(2), 021103 (2012). [CrossRef] [PubMed]
  23. J. Glatz, J. Varga, P. B. Garcia-Allende, M. Koch, F. R. Greten, and V. Ntziachristos, “Concurrent video-rate color and near-infrared fluorescence laparoscopy,” J. Biomed. Opt.18(10), 101302 (2013). [CrossRef] [PubMed]
  24. G. van Dam, G. Themelis, L. M. Crane, N. J. Harlaar, R. G. Pleijhuis, W. Kelder, A. Sarantopoulos, J. Bart, P. S. Low, and V. Ntziachristos, “Intraoperative tumor-specific fluorescent imaging in ovarian cancer by folate receptor-α targeting,” Nat. Med.17, 1315–1319 (2011). [CrossRef] [PubMed]
  25. J. A. Udovich, N. D. Kirkpatrick, A. Kano, A. Tanbakuchi, U. Utzinger, and A. F. Gmitro, “Spectral background and transmission characteristics of fiber optic imaging bundles,” Appl. Opt.47(25), 4560–4568 (2008). [CrossRef] [PubMed]
  26. M. A. Funovics, R. Weissleder, and U. Mahmood, “Catheter-based in vivo imaging of enzyme activity and gene expression: feasibility study in mice,” Radiology231(3), 659–666 (2004). [CrossRef] [PubMed]
  27. R. J. Shah, D. G. Adler, J. D. Conway, D. L. Diehl, F. A. Farraye, S. V. Kantsevoy, R. Kwon, P. Mamula, S. Rodriguez, L. M. Wong Kee Song, W. M. Tierney, and ASGE Technology Committee, “Cholangiopancreatoscopy,” Gastrointest. Endosc.68(3), 411–421 (2008). [CrossRef] [PubMed]
  28. A. R. Rouse, A. Kano, J. A. Udovich, S. M. Kroto, and A. F. Gmitro, “Design and demonstration of a miniature catheter for a confocal microendoscope,” Appl. Opt.43(31), 5763–5771 (2004). [CrossRef] [PubMed]
  29. T. J. Muldoon, M. C. Pierce, D. L. Nida, M. D. Williams, A. Gillenwater, and R. Richards-Kortum, “Subcellular-resolution molecular imaging within living tissue by fiber microendoscopy,” J. Vasc. Res.41, 400–411 (2004). [PubMed]
  30. D. P. Noonan, D. S. Elson, G. P. Mylonas, A. Darzi, and G. Z. Yang, “Laser-induced fluorescence and reflected white light imaging for robot-assisted MIS,” IEEE Trans. Biomed. Eng.56(3), 889–892 (2009). [CrossRef] [PubMed]
  31. R. S. Bradley and M. S. Thorniley, “A review of attenuation correction techniques for tissue fluorescence,” J. R. Soc. Interface3(6), 1–13 (2006). [CrossRef] [PubMed]
  32. P. A. Valdés, F. Leblond, V. L. Jacobs, B. C. Wilson, K. D. Paulsen, and D. W. Roberts, “Quantitative, spectrally-resolved intraoperative fluorescence imaging,” Sci Rep2, 798 (2012). [CrossRef] [PubMed]
  33. M. Raica, A. M. Cimpean, and D. Ribatti, “Angiogenesis in pre-malignant conditions,” Eur. J. Cancer45(11), 1924–1934 (2009). [CrossRef] [PubMed]
  34. A. J. McEwan, H. F. Van Brocklin, and C. Divgi, “Action plan for emerging molecular imaging technologies,” J. Nucl. Med.49(2), 37N–40N (2008). [PubMed]
  35. International Commission on Non-Ionizing Radiation Protection, “Revision of guidelines on limits of exposure to laser radiation of wavelengths between 400 nm and 1.4 µm,” Health Phys.79(4), 431–440 (2000). [CrossRef] [PubMed]
  36. P. B. Garcia-Allende, J. Glatz, M. Koch, and V. Ntziachristos, “Enriching the interventional vision of cancer with fluorescence and optoacoustic imaging,” J. Nucl. Med.54(5), 664–667 (2013). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited