OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 5, Iss. 3 — Mar. 1, 2014
  • pp: 675–689

Diffuse reflectance spectroscopy of epithelial tissue with a smart fiber-optic probe

Bing Yu, Amy Shah, Vivek K. Nagarajan, and Daron G. Ferris  »View Author Affiliations


Biomedical Optics Express, Vol. 5, Issue 3, pp. 675-689 (2014)
http://dx.doi.org/10.1364/BOE.5.000675


View Full Text Article

Enhanced HTML    Acrobat PDF (1701 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Diffuse reflectance spectroscopy (DRS) with a fiber-optic probe can noninvasively quantify the optical properties of epithelial tissues and has shown the potential as a cost-effective, fast and sensitive tool for diagnosis of early precancerous changes in the cervix and oral cavity. However, current DRS systems are susceptible to several sources of systematic and random errors, such as uncontrolled probe-to-tissue pressure and lack of a real-time calibration that can significantly impair the measurement accuracy, reliability and validity of this technology as well as its clinical utility. In addition, such systems use bulky, high power and expensive optical components which impede their widespread use in low- and middle-income countries (LMICs) where epithelial cancer related death is disproportionately high. In this paper we report a portable, easy-to-use and low cost, yet accurate and reliable DRS device that can aid in the screening and diagnosis of oral and cervical cancer. The device uses an innovative smart fiber-optic probe to eliminate operator bias, state-of-the-art photonics components to reduce size and power consumption, and automated software to reduce the need of operator training. The device showed a mean error of 1.4 ± 0.5% and 6.8 ± 1.7% for extraction of phantom absorption and reduced scattering coefficients, respectively. A clinical study on healthy volunteers indicated that a pressure below 1.0 psi is desired for oral mucosal tissues to minimize the probe effects on tissue physiology and morphology.

© 2014 Optical Society of America

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(170.6510) Medical optics and biotechnology : Spectroscopy, tissue diagnostics
(120.5475) Instrumentation, measurement, and metrology : Pressure measurement

ToC Category:
Clinical Instrumentation

History
Original Manuscript: November 20, 2013
Revised Manuscript: February 1, 2014
Manuscript Accepted: February 5, 2014
Published: February 10, 2014

Citation
Bing Yu, Amy Shah, Vivek K. Nagarajan, and Daron G. Ferris, "Diffuse reflectance spectroscopy of epithelial tissue with a smart fiber-optic probe," Biomed. Opt. Express 5, 675-689 (2014)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-5-3-675


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. O. Kujan, A. M. Glenny, R. J. Oliver, N. Thakker, and P. Sloan, “Screening programmes for the early detection and prevention of oral cancer,” Cochrane Database Syst. Rev.3(3), CD004150 (2006). [PubMed]
  2. R. Sankaranarayanan, K. Ramadas, G. Thomas, R. Muwonge, S. Thara, B. Mathew, B. Rajan, and Trivandrum Oral Cancer Screening Study Group, “Effect of screening on oral cancer mortality in Kerala, India: a cluster-randomised controlled trial,” Lancet365(9475), 1927–1933 (2005). [CrossRef] [PubMed]
  3. Oral Cancer Foundation, Early detection is the key to beating oral cancer, Oral Cancer News, (2007)
  4. CDC, Oral Cancer Background Papers. retrieved on September 23, 2009.
  5. E. K. Adams, N. Breen, and P. J. Joski, “Impact of the National Breast and Cervical Cancer Early Detection Program on mammography and Pap test utilization among white, Hispanic, and African American women: 1996-2000,” Cancer109(S2), 348–358 (2007). [CrossRef] [PubMed]
  6. D. Saslow, C. D. Runowicz, D. Solomon, A. B. Moscicki, R. A. Smith, H. J. Eyre, and C. Cohen, “American Cancer Society Guideline for the Early Detection of Cervical Neoplasia and Cancer,” J. Low. Genit. Tract Dis.7(2), 67–86 (2003). [CrossRef] [PubMed]
  7. H. W. Lawson, R. Henson, J. K. Bobo, and M. K. Kaeser, “Implementing recommendations for the early detection of breast and cervical cancer among low-income women,” MMWR Recomm. Rep.49(RR-2), 37–55 (2000). [PubMed]
  8. J. Sherris, C. Herdman, and C. Elias, “Cervical cancer in the developing world,” West. J. Med.175(4), 231–233 (2001). [CrossRef] [PubMed]
  9. M. C. Skala, G. M. Palmer, K. M. Vrotsos, A. Gendron-Fitzpatrick, and N. Ramanujam, “Comparison of a physical model and principal component analysis for the diagnosis of epithelial neoplasias in vivo using diffuse reflectance spectroscopy,” Opt. Express15(12), 7863–7875 (2007). [CrossRef] [PubMed]
  10. V. T. Chang, P. S. Cartwright, S. M. Bean, G. M. Palmer, R. C. Bentley, and N. Ramanujam, “Quantitative physiology of the precancerous cervix in vivo through optical spectroscopy,” Neoplasia11(4), 325–332 (2009). [PubMed]
  11. M. G. Müller, T. A. Valdez, I. Georgakoudi, V. Backman, C. Fuentes, S. Kabani, N. Laver, Z. Wang, C. W. Boone, R. R. Dasari, S. M. Shapshay, and M. S. Feld, “Spectroscopic detection and evaluation of morphologic and biochemical changes in early human oral carcinoma,” Cancer97(7), 1681–1692 (2003). [CrossRef] [PubMed]
  12. D. C. de Veld, M. Skurichina, M. J. Witjes, R. P. Duin, H. J. Sterenborg, and J. L. Roodenburg, “Autofluorescence and diffuse reflectance spectroscopy for oral oncology,” Lasers Surg. Med.36(5), 356–364 (2005). [CrossRef] [PubMed]
  13. A. Sharwani, W. Jerjes, V. Salih, B. Swinson, I. J. Bigio, M. El-Maaytah, and C. Hopper, “Assessment of oral premalignancy using elastic scattering spectroscopy,” Oral Oncol.42(4), 343–349 (2006). [CrossRef] [PubMed]
  14. N. Subhash, J. R. Mallia, S. S. Thomas, A. Mathews, P. Sebastian, and J. Madhavan, “Oral cancer detection using diffuse reflectance spectral ratio R540/R575 of oxygenated hemoglobin bands,” J. Biomed. Opt.11(1), 014018 (2006). [CrossRef] [PubMed]
  15. A. Amelink, O. P. Kaspers, H. J. Sterenborg, J. E. van der Wal, J. L. Roodenburg, and M. J. Witjes, “Non-invasive measurement of the morphology and physiology of oral mucosa by use of optical spectroscopy,” Oral Oncol.44(1), 65–71 (2008). [CrossRef] [PubMed]
  16. M. Rahman, P. Chaturvedi, A. M. Gillenwater, and R. Richards-Kortum, “Low-cost, multimodal, portable screening system for early detection of oral cancer,” J. Biomed. Opt.13(3), 030502 (2008). [CrossRef] [PubMed]
  17. R. A. Schwarz, W. Gao, D. Daye, M. D. Williams, R. Richards-Kortum, and A. M. Gillenwater, “Autofluorescence and diffuse reflectance spectroscopy of oral epithelial tissue using a depth-sensitive fiber-optic probe,” Appl. Opt.47(6), 825–834 (2008). [CrossRef] [PubMed]
  18. Y. N. Mirabal, S. K. Chang, E. N. Atkinson, A. Malpica, M. Follen, and R. Richards-Kortum, “Reflectance spectroscopy for in vivo detection of cervical precancer,” J. Biomed. Opt.7(4), 587–594 (2002). [CrossRef] [PubMed]
  19. S. K. Chang, Y. N. Mirabal, E. N. Atkinson, D. Cox, A. Malpica, M. Follen, and R. Richards-Kortum, “Combined reflectance and fluorescence spectroscopy for in vivo detection of cervical pre-cancer,” J. Biomed. Opt.10(2), 024031 (2005). [CrossRef] [PubMed]
  20. M. Follen, S. Crain, C. MacAulay, K. Basen-Engquist, S. B. Cantor, D. Cox, E. N. Atkinson, N. MacKinnon, M. Guillaud, and R. Richards-Kortum, “Optical technologies for cervical neoplasia: update of an NCI program project grant,” Clin. Adv. Hematol. Oncol.3(1), 41–53 (2005). [PubMed]
  21. N. M. Marín, A. Milbourne, H. Rhodes, T. Ehlen, D. Miller, L. Benedet, R. Richards-Kortum, and M. Follen, “Diffuse reflectance patterns in cervical spectroscopy,” Gynecol. Oncol.99(3Suppl 1), S116–S120 (2005). [CrossRef] [PubMed]
  22. D. Arifler, C. MacAulay, M. Follen, and R. Richards-Kortum, “Spatially resolved reflectance spectroscopy for diagnosis of cervical precancer: Monte Carlo modeling and comparison to clinical measurements,” J. Biomed. Opt.11(6), 064027 (2006). [CrossRef] [PubMed]
  23. M. Cardenas-Turanzas, J. A. Freeberg, J. L. Benedet, E. N. Atkinson, D. D. Cox, R. Richards-Kortum, C. MacAulay, M. Follen, and S. B. Cantor, “The clinical effectiveness of optical spectroscopy for the in vivo diagnosis of cervical intraepithelial neoplasia: where are we?” Gynecol. Oncol.107(1Suppl 1), S138–S146 (2007). [CrossRef] [PubMed]
  24. J. A. Freeberg, J. L. Benedet, C. MacAulay, L. A. West, and M. Follen, “The performance of fluorescence and reflectance spectroscopy for the in vivo diagnosis of cervical neoplasia; point probe versus multispectral approaches,” Gynecol. Oncol.107(1Suppl 1), S248–S255 (2007). [CrossRef] [PubMed]
  25. A. Wang, V. Nammalavar, and R. Drezek, “Targeting spectral signatures of progressively dysplastic stratified epithelia using angularly variable fiber geometry in reflectance Monte Carlo simulations,” J. Biomed. Opt.12(4), 044012 (2007). [CrossRef] [PubMed]
  26. D. Arifler, R. A. Schwarz, S. K. Chang, and R. Richards-Kortum, “Reflectance spectroscopy for diagnosis of epithelial precancer: model-based analysis of fiber-optic probe designs to resolve spectral information from epithelium and stroma,” Appl. Opt.44(20), 4291–4305 (2005). [CrossRef] [PubMed]
  27. P. M. Lane, T. Gilhuly, P. Whitehead, H. Zeng, C. F. Poh, S. Ng, P. M. Williams, L. Zhang, M. P. Rosin, and C. E. MacAulay, “Simple device for the direct visualization of oral-cavity tissue fluorescence,” J. Biomed. Opt.11(2), 024006 (2006). [CrossRef] [PubMed]
  28. I. Pavlova, C. R. Weber, R. A. Schwarz, M. D. Williams, A. M. Gillenwater, and R. Richards-Kortum, “Fluorescence spectroscopy of oral tissue: Monte Carlo modeling with site-specific tissue properties,” J. Biomed. Opt.14(1), 014009 (2009). [CrossRef] [PubMed]
  29. R. Hasina and M. W. Lingen, “Angiogenesis in oral cancer,” J. Dent. Educ.65(11), 1282–1290 (2001). [PubMed]
  30. I. Georgakoudi, E. E. Sheets, M. G. Müller, V. Backman, C. P. Crum, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Trimodal spectroscopy for the detection and characterization of cervical precancers in vivo,” Am. J. Obstet. Gynecol.186(3), 374–382 (2002). [CrossRef] [PubMed]
  31. Q. Liu and N. Ramanujam, “Sequential estimation of optical properties of a two-layered epithelial tissue model from depth-resolved ultraviolet-visible diffuse reflectance spectra,” Appl. Opt.45(19), 4776–4790 (2006). [CrossRef] [PubMed]
  32. C. Zhu, G. M. Palmer, T. M. Breslin, F. Xu, and N. Ramanujam, “Use of a multiseparation fiber optic probe for the optical diagnosis of breast cancer,” J. Biomed. Opt.10(2), 024032 (2005). [CrossRef] [PubMed]
  33. G. M. Palmer and N. Ramanujam, “Monte Carlo-based inverse model for calculating tissue optical properties. Part I: Theory and validation on synthetic phantoms,” Appl. Opt.45(5), 1062–1071 (2006). [CrossRef] [PubMed]
  34. U. Utzinger and R. R. Richards-Kortum, “Fiber optic probes for biomedical optical spectroscopy,” J. Biomed. Opt.8(1), 121–147 (2003). [CrossRef] [PubMed]
  35. E. K. Chan, B. Sorg, D. Protsenko, M. O’Neil, M. Motamedi, and A. J. Welch, “Effects of compression on soft tissue optical properties,” IEEE J. Sel. Top Quantum Electron.2(4), 943–950 (1996).
  36. R. Reif, M. S. Amorosino, K. W. Calabro, O. A’Amar, S. K. Singh, and I. J. Bigio, “Analysis of changes in reflectance measurements on biological tissues subjected to different probe pressures,” J. Biomed. Opt.13(1), 010502 (2008). [CrossRef] [PubMed]
  37. Y. Ti and W. C. Lin, “Effects of probe contact pressure on in vivo optical spectroscopy,” Opt. Express16(6), 4250–4262 (2008). [CrossRef] [PubMed]
  38. A. Nath, K. Rivoire, S. Chang, D. Cox, E. N. Atkinson, M. Follen, and R. Richards-Kortum, “Effect of probe pressure on cervical fluorescence spectroscopy measurements,” J. Biomed. Opt.9(3), 523–533 (2004). [CrossRef] [PubMed]
  39. K. Rivoire, A. Nath, D. Cox, E. N. Atkinson, R. Richards-Kortum, and M. Follen, “The effects of repeated spectroscopic pressure measurements on fluorescence intensity in the cervix,” Am. J. Obstet. Gynecol.191(5), 1606–1617 (2004). [CrossRef] [PubMed]
  40. H. Shangguan, S. A. Prahl, S. L. Jacques, and L. W. Casperson, “Pressure effects on soft tissues monitored by changes in tissue,” Proc. SPIE3254, 366 (1998).
  41. J. A. D. Atencio, E. E. O. Guillén, S. V. y. Montiel, M. C. Rodríguez, J. C. Ramos, J. L. Gutiérrez, and F. Martínez, “Influence of probe pressure on human skin diffuse reflectance spectroscopy measurements,” Opt. Mem. Neural. Networks18(1), 6–14 (2009). [CrossRef]
  42. W. Chen, R. Liu, K. Xu, and R. K. Wang, “Influence of contact state on NIR diffuse reflectance spectroscopy in vivo,” J. Phys. D Appl. Phys.38(15), 2691–2695 (2005). [CrossRef]
  43. S. Ruderman, A. J. Gomes, V. Stoyneva, J. D. Rogers, A. J. Fought, B. D. Jovanovic, and V. Backman, “Analysis of pressure, angle and temporal effects on tissue optical properties from polarization-gated spectroscopic probe measurements,” Biomed. Opt. Express1(2), 489–499 (2010). [CrossRef] [PubMed]
  44. A. Kienle, L. Lilge, M. S. Patterson, R. Hibst, R. Steiner, and B. C. Wilson, “Spatially resolved absolute diffuse reflectance measurements for noninvasive determination of the optical scattering and absorption coefficients of biological tissue,” Appl. Opt.35(13), 2304–2314 (1996). [CrossRef] [PubMed]
  45. S. C. Gebhart, R. C. Thompson, and A. Mahadevan-Jansen, “Liquid-crystal tunable filter spectral imaging for brain tumor demarcation,” Appl. Opt.46(10), 1896–1910 (2007). [CrossRef] [PubMed]
  46. S. F. Bish, N. Rajaram, B. Nichols, and J. W. Tunnell, “Development of a noncontact diffuse optical spectroscopy probe for measuring tissue optical properties,” J. Biomed. Opt.16(12), 120505 (2011). [CrossRef] [PubMed]
  47. D. J. Cuccia, F. Bevilacqua, A. J. Durkin, F. R. Ayers, and B. J. Tromberg, “Quantitation and mapping of tissue optical properties using modulated imaging,” J. Biomed. Opt.14(2), 024012 (2009). [CrossRef] [PubMed]
  48. M. G. Nichols, E. L. Hull, and T. H. Foster, “Design and testing of a white-light, steady-state diffuse reflectance spectrometer for determination of optical properties of highly scattering systems,” Appl. Opt.36(1), 93–104 (1997). [CrossRef] [PubMed]
  49. N. M. Marín, N. MacKinnon, C. MacAulay, S. K. Chang, E. N. Atkinson, D. Cox, D. Serachitopol, B. Pikkula, M. Follen, and R. Richards-Kortum, “Calibration standards for multicenter clinical trials of fluorescence spectroscopy for in vivo diagnosis,” J. Biomed. Opt.11(1), 014010 (2006). [CrossRef] [PubMed]
  50. G. Zonios, L. T. Perelman, V. Backman, R. Manoharan, M. Fitzmaurice, J. Van Dam, and M. S. Feld, “Diffuse reflectance spectroscopy of human adenomatous colon polyps in vivo,” Appl. Opt.38(31), 6628–6637 (1999). [CrossRef] [PubMed]
  51. U. Utzinger, M. Brewer, E. Silva, D. Gershenson, R. C. Blast, M. Follen, and R. Richards-Kortum, “Reflectance spectroscopy for in vivo characterization of ovarian tissue,” Lasers Surg. Med.28(1), 56–66 (2001). [CrossRef] [PubMed]
  52. P. Thueler, I. Charvet, F. Bevilacqua, M. St. Ghislain, G. Ory, P. Marquet, P. Meda, B. Vermeulen, and C. Depeursinge, “In vivo endoscopic tissue diagnostics based on spectroscopic absorption, scattering, and phase function properties,” J. Biomed. Opt.8(3), 495–503 (2003). [CrossRef] [PubMed]
  53. B. Yu, H. Fu, T. Bydlon, J. E. Bender, and N. Ramanujam, “Diffuse reflectance spectroscopy with a self-calibrating fiber optic probe,” Opt. Lett.33(16), 1783–1785 (2008). [CrossRef] [PubMed]
  54. B. Yu, H. L. Fu, and N. Ramanujam, “Instrument independent diffuse reflectance spectroscopy,” J. Biomed. Opt.16(1), 011010 (2011). [CrossRef] [PubMed]
  55. V. T.-C. Chang, D. Merisier, B. Yu, D. K. Walmer, and N. Ramanujam, “Towards a field-compatible optical spectroscopic device for cervical cancer screening in resource-limited settings: effects of calibration and pressure,” Opt. Express19(19), 17908–17924 (2011). [CrossRef] [PubMed]
  56. B. Yu, D. W. Kim, J. Deng, H. Xiao, and A. Wang, “Fiber Fabry-Perot sensors for detection of partial discharges in power transformers,” Appl. Opt.42(16), 3241–3250 (2003). [CrossRef] [PubMed]
  57. B. Yu, A. Wang, G. Pickrell, and J. Xu, “Tunable-optical-filter-based white-light interferometry for sensing,” Opt. Lett.30(12), 1452–1454 (2005). [CrossRef] [PubMed]
  58. J. Xu, G. R. Pickrell, B. Yu, M. Han, Y. Zhu, X. Wang, K. L. Cooper, and A. Wang, “Epoxy-free high temperature fiber optic pressure sensors for gas turbine engine applications,” Proc. SPIE5590, 1 (2004).
  59. B. Yu, D. W. Kim, J. Deng, H. Xiao, and A. Wang, “Fiber Fabry-Perot Sensors for Detection of Partial Discharges in Power Transformers,” Appl. Opt.42(16), 3241–3250 (2003). [CrossRef] [PubMed]
  60. B. Qi, G. R. Pickrell, J. Xu, P. Zhang, Y. Duan, W. Peng, Z. Huo, H. Xiao, R. G. May, and A. Wang, “Novel data processing techniques for dispersive white light interferometer,” Opt. Eng.42(11), 3165–3171 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited