OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 5, Iss. 3 — Mar. 1, 2014
  • pp: 690–700

4D tracking of clinical seminal samples for quantitative characterization of motility parameters

Giuseppe Di Caprio, Ahmed El Mallahi, Pietro Ferraro, Roberta Dale, Gianfranco Coppola, Brian Dale, Giuseppe Coppola, and Frank Dubois  »View Author Affiliations

Biomedical Optics Express, Vol. 5, Issue 3, pp. 690-700 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (3307 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper we investigate the use of a digital holographic microscope, with partial spatial coherent illumination, for the automated detection and tracking of spermatozoa. This in vitro technique for the analysis of quantitative parameters is useful for assessment of semen quality. In fact, thanks to the capabilities of digital holography, the developed algorithm allows us to resolve in-focus amplitude and phase maps of the cells under study, independently of focal plane of the sample image. We have characterized cell motility on clinical samples of seminal fluid. In particular, anomalous sperm cells were characterized and the quantitative motility parameters were compared to those of normal sperm.

© 2014 Optical Society of America

OCIS Codes
(170.1530) Medical optics and biotechnology : Cell analysis
(170.3010) Medical optics and biotechnology : Image reconstruction techniques
(180.0180) Microscopy : Microscopy
(090.1995) Holography : Digital holography

ToC Category:

Original Manuscript: October 14, 2013
Revised Manuscript: December 6, 2013
Manuscript Accepted: December 30, 2013
Published: February 11, 2014

Giuseppe Di Caprio, Ahmed El Mallahi, Pietro Ferraro, Roberta Dale, Gianfranco Coppola, Brian Dale, Giuseppe Coppola, and Frank Dubois, "4D tracking of clinical seminal samples for quantitative characterization of motility parameters," Biomed. Opt. Express 5, 690-700 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. G. Cooper, E. Noonan, S. von Eckardstein, J. Auger, H. W. Baker, H. M. Behre, T. B. Haugen, T. Kruger, C. Wang, M. T. Mbizvo, and K. M. Vogelsong, “World Health Organization reference values for human semen characteristics,” Hum. Reprod. Update16(3), 231–245 (2010). [CrossRef] [PubMed]
  2. D. Mortimer, I. J. Pandya, and R. S. Sawers, “Relationship between human sperm motility characteristics and sperm penetration into human cervical mucus in vitro,” J. Reprod. Fertil.78(1), 93–102 (1986). [CrossRef] [PubMed]
  3. P. Denissenko, V. Kantsler, D. J. Smith, and J. Kirkman-Brown, “Human spermatozoa migration in microchannels reveals boundary-following navigation,” Proc. Natl. Acad. Sci. U.S.A.109(21), 8007–8010 (2012). [CrossRef] [PubMed]
  4. M. D. Lopez-Garcia, R. L. Monson, K. Haubert, M. B. Wheeler, and D. J. Beebe, “Sperm motion in a microfluidic fertilization device,” Biomed. Microdevices10(5), 709–718 (2008). [CrossRef] [PubMed]
  5. Y.-A. Chen, Z.-W. Huang, F.-S. Tsai, C.-Y. Chen, C.-M. Lin, and A. M. Wo, “Analysis of sperm concentration and motility in a microfluidic device,” Microfluid Nanofluidics10(1), 59–67 (2011). [CrossRef]
  6. S. T. Mortimer, “CASA--Practical aspects,” J. Androl.21(4), 515–524 (2000). [PubMed]
  7. T. W. Su, L. Xue, and A. Ozcan, “High-throughput lensfree 3D tracking of human sperms reveals rare statistics of helical trajectories,” Proc. Natl. Acad. Sci. U.S.A.109(40), 16018–16022 (2012). [CrossRef] [PubMed]
  8. L. Yu and L. Cai, “Iterative algorithm with a constraint condition for numerical reconstruction of a three-dimensional object from its hologram,” J. Opt. Soc. Am. A18(5), 1033–1045 (2001). [CrossRef] [PubMed]
  9. J. Garcia-Sucerquia, W. Xu, S. K. Jericho, P. Klages, M. H. Jericho, and H. J. Kreuzer, “Digital in-line holographic microscopy,” Appl. Opt.45(5), 836–850 (2006). [CrossRef] [PubMed]
  10. F. Verpillat, F. Joud, P. Desbiolles, and M. Gross, “Dark-field digital holographic microscopy for 3D-tracking of gold nanoparticles,” Opt. Express19(27), 26044–26055 (2011). [CrossRef] [PubMed]
  11. P. Ferraro, S. Grilli, D. Alfieri, S. De Nicola, A. Finizio, G. Pierattini, B. Javidi, G. Coppola, and V. Striano, “Extended focused image in microscopy by digital Holography,” Opt. Express13(18), 6738–6749 (2005). [CrossRef] [PubMed]
  12. A. El Mallahi, C. Minetti, and F. Dubois, “Automated three-dimensional detection and classification of living organisms using digital holographic microscopy with partial spatial coherent source: application to the monitoring of drinking water resources,” Appl. Opt.52(1), A68–A80 (2013). [CrossRef] [PubMed]
  13. Y. Lim, J. Hahn, S. Kim, J. Park, H. Kim, and B. Lee, “Plasmonic light beaming manipulation and its detection using holographic microscopy,” IEEE J. Quantum Electron.46(3), 300–305 (2010). [CrossRef]
  14. G. Di Caprio, P. Dardano, G. Coppola, S. Cabrini, and V. Mocella, “Digital holographic microscopy characterization of superdirective beam by metamaterial,” Opt. Lett.37(7), 1142–1144 (2012). [CrossRef] [PubMed]
  15. G. Di Caprio, G. Coppola, L. De Stefano, M. De Stefano, A. Antonucci, R. Congestri, and E. De Tommasi, “Shedding light on diatom photonics by means of digital holography,” J. Biophotonics DOI: http://dx.doi.org/ (2012). [CrossRef]
  16. G. Di Caprio, M. Gioffrè, N. Saffioti, S. Grilli, P. Ferraro, R. Puglisi, D. Balduzzi, A. Galli, and G. Coppola, “Quantitative label-free animal sperm imaging by means of digital holographic microscopy,” IEEE J. Quantum Electron.16(4), 833–840 (2010).
  17. P. Memmolo, G. Di Caprio, C. Distante, M. Paturzo, R. Puglisi, D. Balduzzi, A. Galli, G. Coppola, and P. Ferraro, “Identification of bovine sperm head for morphometry analysis in quantitative phase-contrast holographic microscopy,” Opt. Express19(23), 23215–23226 (2011). [CrossRef] [PubMed]
  18. F. Merola, L. Miccio, P. Memmolo, G. Di Caprio, A. Galli, R. Puglisi, D. Balduzzi, G. Coppola, P. Netti, and P. Ferraro, “Digital holography as a method for 3D imaging and estimating the biovolume of motile cells,” Lab Chip13(23), 4512–4516 (2013). [CrossRef] [PubMed]
  19. I. Crha, J. Zakova, M. Huser, P. Ventruba, E. Lousova, and M. Pohanka, “Digital holographic microscopy in human sperm imaging,” J. Assist. Reprod. Genet.28(8), 725–729 (2011). [CrossRef] [PubMed]
  20. G. Coppola, G. Di Caprio, M. Wilding, P. Ferraro, G. Esposito, L. Di Matteo, R. Dale, G. Coppola and B. Dale, “Digital holographic microscopy for the evaluation of human sperm structure,” Zygote DOI: http://dx.doi.org/ (2013). [CrossRef]
  21. P. Langehanenberg, G. von Bally, and B. Kemper, “Autofocusing in digital holographic microscopy,” 3D Research2, 1–11 (2001).
  22. F. Dubois, M. L. Requena, C. Minetti, O. Monnom, and E. Istasse, “Partial spatial coherence effects in digital holographic microscopy with a laser source,” Appl. Opt.43(5), 1131–1139 (2004). [CrossRef] [PubMed]
  23. C. Mann, L. Yu, C. M. Lo, and M. Kim, “High-resolution quantitative phase-contrast microscopy by digital holography,” Opt. Express13(22), 8693–8698 (2005). [CrossRef] [PubMed]
  24. J. W. Goodman, Introduction to Fourier Optics, 2nd edn. (McGraw-Hill 1996).
  25. M. Nazarathy and J. Shamir, “Fourier optics described by operator algebra,” J. Opt. Soc. Am.70(2), 150–159 (1980). [CrossRef]
  26. F. Dubois, C. Yourassowky, N. Callens, C. Minetti, P. Queeckers, T. Podgorski, and A. Brandenbrurger, “Digital Holographic Microscopy working with a Partially Spatial Coherent Source,” Coherent Light Microscopy (Springer 2011).
  27. G. Pedrini, S. Schedin, and H. J. Tiziani, “Aberration compensation in digital holographic reconstruction of microscopic objects,” J. Mod. Opt.48, 1035–1041 (2001).
  28. P. Ferraro, S. De Nicola, A. Finizio, G. Coppola, S. Grilli, C. Magro, and G. Pierattini, “Compensation of the inherent wave front curvature in digital holographic coherent microscopy for quantitative phase-contrast imaging,” Appl. Opt.42(11), 1938–1946 (2003). [CrossRef] [PubMed]
  29. P. Langehanenberg, B. Kemper, D. Dirksen, and G. von Bally, “Autofocusing in digital holographic phase contrast microscopy on pure phase objects for live cell imaging,” Appl. Opt.47(19), D176–D182 (2008). [CrossRef] [PubMed]
  30. P. Gao, B. Yao, J. Min, R. Guo, B. Ma, J. Zheng, M. Lei, S. Yan, D. Dan, and T. Ye, “Autofocusing of digital holographic microscopy based on off-axis illuminations,” Opt. Lett.37(17), 3630–3632 (2012). [CrossRef] [PubMed]
  31. J. Kostencka, T. Kozacki, and K. Lizewski, “Autofocusing method for tilted image plane detection in digital holographic microscopy,” Opt. Commun.297, 20–26 (2013). [CrossRef]
  32. F. Dubois, C. Schockaert, N. Callens, and C. Yourassowsky, “Focus plane detection criteria in digital holography microscopy by amplitude analysis,” Opt. Express14(13), 5895–5908 (2006). [CrossRef] [PubMed]
  33. A. El Mallahi and F. Dubois, “Dependency and precision of the refocusing criterion based on amplitude analysis in digital holographic microscopy,” Opt. Express19(7), 6684–6698 (2011). [CrossRef] [PubMed]
  34. N. Otsu, “A threshold selection method from gray-level histograms,” Automatica11, 285–296 (1975).
  35. G. E. Forsythe, M. A. Malcolm, and C. B. Moler, Computer Methods for Mathematical Computations (Prentice-Hall, 1976).
  36. Y. Hao and A. Asundi, “Impact of charge-coupled device size on axial measurement error in digital holographic system,” Opt. Lett.38(8), 1194–1196 (2013). [CrossRef] [PubMed]
  37. G. Di Caprio, A. El Mallahi, P. Ferraro, G. Coppola and F. Dubois, “Automatic algorithm for the detection and 3D tracking of biological particles in digital holographic microscopy.” Proceeding. EOS: Topical Meeting on Optical Microsystems (2011).
  38. G. Di Caprio, Quantitative label-free cell imaging by means of digital holographic miscroscopy: a roadmap for a complete characterization of biological samples, PhD dissertation (University of Naples “Federico II” 2011).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MP4 (10587 KB)     
» Media 2: MP4 (937 KB)     
» Media 3: MP4 (5879 KB)     
» Media 4: MP4 (8005 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited