OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 5, Iss. 3 — Mar. 1, 2014
  • pp: 713–727

Microstructure of subretinal drusenoid deposits revealed by adaptive optics imaging

Alexander Meadway, Xiaolin Wang, Christine A. Curcio, and Yuhua Zhang  »View Author Affiliations

Biomedical Optics Express, Vol. 5, Issue 3, pp. 713-727 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (4485 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Subretinal drusenoid deposits (SDD), a recently recognized lesion associated with progression of age-related macular degeneration, were imaged with adaptive optics scanning laser ophthalmoscopy (AO-SLO) and optical coherence tomography (AO-OCT). AO-SLO revealed a distinct en face structure of stage 3 SDD, showing a hyporeflective annulus surrounded reflective core packed with hyperreflective dots bearing a superficial similarity to the photoreceptors in the unaffected retina. However, AO-OCT suggested that the speckled appearance over the SDD rendered by AO-SLO was the lesion material itself, rather than photoreceptors. AO-OCT assists proper interpretation and understanding of the SDD structure and the lesions’ impact on surrounding photoreceptors produced by AO-SLO and vice versa.

© 2014 Optical Society of America

OCIS Codes
(110.4500) Imaging systems : Optical coherence tomography
(330.5310) Vision, color, and visual optics : Vision - photoreceptors
(330.7329) Vision, color, and visual optics : Visual optics, pathology
(110.1080) Imaging systems : Active or adaptive optics

ToC Category:
Ophthalmology Applications

Original Manuscript: November 14, 2013
Revised Manuscript: January 18, 2014
Manuscript Accepted: February 5, 2014
Published: February 12, 2014

Alexander Meadway, Xiaolin Wang, Christine A. Curcio, and Yuhua Zhang, "Microstructure of subretinal drusenoid deposits revealed by adaptive optics imaging," Biomed. Opt. Express 5, 713-727 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Rudolf, G. Malek, J. D. Messinger, M. E. Clark, L. Wang, and C. A. Curcio, “Sub-retinal drusenoid deposits in human retina: organization and composition,” Exp. Eye Res.87(5), 402–408 (2008). [CrossRef] [PubMed]
  2. C. A. Curcio, J. D. Messinger, K. R. Sloan, G. McGwin, N. E. Medeiros, and R. F. Spaide, “Subretinal drusenoid deposits in non-neovascular age-related macular degeneration: morphology, prevalence, topography, and biogenesis model,” Retina33(2), 265–276 (2013). [CrossRef] [PubMed]
  3. G. Mimoun, G. Soubrane, and G. Coscas, “[Macular drusen],” J. Fr. Ophtalmol.13(10), 511–530 (1990). [PubMed]
  4. J. Sarks, J. Arnold, I. V. Ho, S. Sarks, and M. Killingsworth, “Evolution of reticular pseudodrusen,” Br. J. Ophthalmol.95(7), 979–985 (2011). [CrossRef] [PubMed]
  5. S. Y. Cohen, L. Dubois, R. Tadayoni, C. Delahaye-Mazza, C. Debibie, and G. Quentel, “Prevalence of reticular pseudodrusen in age-related macular degeneration with newly diagnosed choroidal neovascularisation,” Br. J. Ophthalmol.91(3), 354–359 (2007). [CrossRef] [PubMed]
  6. S. Schmitz-Valckenberg, F. Alten, J. S. Steinberg, G. J. Jaffe, M. Fleckenstein, B. N. Mukesh, T. C. Hohman, F. G. Holz, and Geographic Atrophy Progression (GAP) Study Group, “Reticular drusen associated with geographic atrophy in age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci.52(9), 5009–5015 (2011). [CrossRef] [PubMed]
  7. L. Xu, A. M. Blonska, N. M. Pumariega, S. Bearelly, M. A. Sohrab, G. S. Hageman, and R. T. Smith, “Reticular macular disease is associated with multilobular geographic atrophy in age-related macular degeneration,” Retina33(9), 1850–1862 (2013). [CrossRef] [PubMed]
  8. M. Marsiglia, S. Boddu, S. Bearelly, L. Xu, B. E. Breaux, K. B. Freund, L. A. Yannuzzi, and R. T. Smith, “Association between geographic atrophy progression and reticular pseudodrusen in eyes with dry age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci.54(12), 7362–7369 (2013). [CrossRef] [PubMed]
  9. R. F. Spaide, “Outer retinal atrophy after regression of subretinal drusenoid deposits as a newly recognized form of late age-related macular degeneration,” Retina33(9), 1800–1808 (2013). [CrossRef] [PubMed]
  10. S. A. Zweifel, R. F. Spaide, C. A. Curcio, G. Malek, and Y. Imamura, “Reticular pseudodrusen are subretinal drusenoid deposits,” Ophthalmology117(2), 303–312 (2010). [CrossRef] [PubMed]
  11. S. Schmitz-Valckenberg, J. S. Steinberg, M. Fleckenstein, S. Visvalingam, C. K. Brinkmann, and F. G. Holz, “Combined confocal scanning laser ophthalmoscopy and spectral-domain optical coherence tomography imaging of reticular drusen associated with age-related macular degeneration,” Ophthalmology117(6), 1169–1176 (2010). [CrossRef] [PubMed]
  12. G. Querques, M. Srour, N. Massamba, N. Puche, and E. H. Souied, “Reticular pseudodrusen,” Ophthalmology120(4), 872 (2013). [CrossRef] [PubMed]
  13. G. Querques, L. Querques, D. Martinelli, N. Massamba, G. Coscas, G. Soubrane, and E. H. Souied, “Pathologic insights from integrated imaging of reticular pseudodrusen in age-related macular degeneration,” Retina31(3), 518–526 (2011). [CrossRef] [PubMed]
  14. G. Querques, F. Canouï-Poitrine, F. Coscas, N. Massamba, L. Querques, G. Mimoun, F. Bandello, and E. H. Souied, “Analysis of progression of reticular pseudodrusen by spectral domain-optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.53(3), 1264–1270 (2012). [CrossRef] [PubMed]
  15. J. Liang, D. R. Williams, and D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A14(11), 2884–2892 (1997). [CrossRef] [PubMed]
  16. A. Roorda, F. Romero-Borja, W. Donnelly, H. Queener, T. Hebert, and M. Campbell, “Adaptive optics scanning laser ophthalmoscopy,” Opt. Express10(9), 405–412 (2002). [CrossRef] [PubMed]
  17. R. J. Zawadzki, S. M. Jones, S. S. Olivier, M. Zhao, B. A. Bower, J. A. Izatt, S. Choi, S. Laut, and J. S. Werner, “Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging,” Opt. Express13(21), 8532–8546 (2005). [CrossRef] [PubMed]
  18. Y. Zhang, S. Poonja, and A. Roorda, “MEMS-based adaptive optics scanning laser ophthalmoscopy,” Opt. Lett.31(9), 1268–1270 (2006). [CrossRef] [PubMed]
  19. Y. Zhang, S. Poonja, and A. Roorda, “AOSLO: from benchtop to clinic,” Proc. SPIE6306, 63060V (2006). [CrossRef]
  20. Y. Zhang, B. Cense, J. Rha, R. S. Jonnal, W. Gao, R. J. Zawadzki, J. S. Werner, S. Jones, S. Olivier, and D. T. Miller, “High-speed volumetric imaging of cone photoreceptors with adaptive optics spectral-domain optical coherence tomography,” Opt. Express14(10), 4380–4394 (2006). [CrossRef] [PubMed]
  21. S. A. Burns, R. Tumbar, A. E. Elsner, D. Ferguson, and D. X. Hammer, “Large-field-of-view, modular, stabilized, adaptive-optics-based scanning laser ophthalmoscope,” J. Opt. Soc. Am. A24(5), 1313–1326 (2007). [CrossRef] [PubMed]
  22. R. J. Zawadzki, S. S. Choi, S. M. Jones, S. S. Oliver, and J. S. Werner, “Adaptive optics-optical coherence tomography: optimizing visualization of microscopic retinal structures in three dimensions,” J. Opt. Soc. Am. A24(5), 1373–1383 (2007). [CrossRef] [PubMed]
  23. R. J. Zawadzki, B. Cense, Y. Zhang, S. S. Choi, D. T. Miller, and J. S. Werner, “Ultrahigh-resolution optical coherence tomography with monochromatic and chromatic aberration correction,” Opt. Express16(11), 8126–8143 (2008). [CrossRef] [PubMed]
  24. A. Roorda, “Applications of adaptive optics scanning laser ophthalmoscopy,” Optom. Vis. Sci.87(4), 260–268 (2010). [PubMed]
  25. D. T. Miller, O. P. Kocaoglu, Q. Wang, and S. Lee, “Adaptive optics and the eye (super resolution OCT),” Eye (Lond.)25(3), 321–330 (2011). [CrossRef] [PubMed]
  26. A. Dubra, Y. Sulai, J. L. Norris, R. F. Cooper, A. M. Dubis, D. R. Williams, and J. Carroll, “Noninvasive imaging of the human rod photoreceptor mosaic using a confocal adaptive optics scanning ophthalmoscope,” Biomed. Opt. Express2(7), 1864–1876 (2011). [CrossRef] [PubMed]
  27. R. J. Zawadzki, S. M. Jones, S. Pilli, S. Balderas-Mata, D. Y. Kim, S. S. Olivier, and J. S. Werner, “Integrated adaptive optics optical coherence tomography and adaptive optics scanning laser ophthalmoscope system for simultaneous cellular resolution in vivo retinal imaging,” Biomed. Opt. Express2(6), 1674–1686 (2011). [CrossRef] [PubMed]
  28. D. X. Hammer, R. D. Ferguson, M. Mujat, A. Patel, E. Plumb, N. Iftimia, T. Y. Chui, J. D. Akula, and A. B. Fulton, “Multimodal adaptive optics retinal imager: design and performance,” J. Opt. Soc. Am. A29(12), 2598–2607 (2012). [CrossRef] [PubMed]
  29. S. Mrejen, T. Sato, C. A. Curcio, and R. F. Spaide, “Assessing the Cone Photoreceptor Mosaic in Eyes with Pseudodrusen and Soft Drusen In Vivo Using Adaptive Optics Imaging,” Ophthalmology121(2), 545–551 (2013). [PubMed]
  30. Y. Zhang, X. Wang, E. R. Blanco, M. E. Clark, C. D. Witherspoon, R. F. Spaide, C. A. Girkin, C. Owsley, and C. A. Curcio, “Photoreceptor perturbation around subretinal drusenoid deposits revealed by adaptive optics scanning laser ophthalmoscopy,” Am. J. Ophthalmol. (In review).
  31. R. F. Spaide, “Questioning optical coherence tomography,” Ophthalmology119(11), 2203–2204 (2012). [CrossRef] [PubMed]
  32. R. F. Spaide and C. A. Curcio, “Anatomical correlates to the bands seen in the outer retina by optical coherence tomography: literature review and model,” Retina31(8), 1609–1619 (2011). [CrossRef] [PubMed]
  33. A. Meadway, C. A. Girkin, and Y. Zhang, “A dual-modal retinal imaging system with adaptive optics,” Opt. Express21(24), 29792–29807 (2013). [CrossRef]
  34. Y. Zhang, J. Rha, R. Jonnal, and D. Miller, “Adaptive optics parallel spectral domain optical coherence tomography for imaging the living retina,” Opt. Express13(12), 4792–4811 (2005). [CrossRef] [PubMed]
  35. F. C. Delori, R. H. Webb, D. H. Sliney, and American National Standards Institute, “Maximum permissible exposures for ocular safety (ANSI 2000), with emphasis on ophthalmic devices,” J. Opt. Soc. Am. A24(5), 1250–1265 (2007). [CrossRef] [PubMed]
  36. C. R. Vogel, D. W. Arathorn, A. Roorda, and A. Parker, “Retinal motion estimation in adaptive optics scanning laser ophthalmoscopy,” Opt. Express14(2), 487–497 (2006). [CrossRef] [PubMed]
  37. R. F. Spaide and C. A. Curcio, “Drusen characterization with multimodal imaging,” Retina30(9), 1441–1454 (2010). [CrossRef] [PubMed]
  38. N. Ueda-Arakawa, S. Ooto, A. Tsujikawa, K. Yamashiro, A. Oishi, and N. Yoshimura, “Sensitivity and specificity of detecting reticular pseudodrusen in multimodal imaging in Japanese patients,” Retina33(3), 490–497 (2013). [CrossRef] [PubMed]
  39. A. Pallikaris, D. R. Williams, and H. Hofer, “The reflectance of single cones in the living human eye,” Invest. Ophthalmol. Vis. Sci.44(10), 4580–4592 (2003). [CrossRef] [PubMed]
  40. R. F. Cooper, A. M. Dubis, A. Pavaskar, J. Rha, A. Dubra, and J. Carroll, “Spatial and temporal variation of rod photoreceptor reflectance in the human retina,” Biomed. Opt. Express2(9), 2577–2589 (2011). [CrossRef] [PubMed]
  41. O. P. Kocaoglu, S. Lee, R. S. Jonnal, Q. Wang, A. E. Herde, J. C. Derby, W. Gao, and D. T. Miller, “Imaging cone photoreceptors in three dimensions and in time using ultrahigh resolution optical coherence tomography with adaptive optics,” Biomed. Opt. Express2(4), 748–763 (2011). [CrossRef] [PubMed]
  42. M. A. Sohrab, R. T. Smith, H. Salehi-Had, S. R. Sadda, and A. A. Fawzi, “Image registration and multimodal imaging of reticular pseudodrusen,” Invest. Ophthalmol. Vis. Sci.52(8), 5743–5748 (2011). [CrossRef] [PubMed]
  43. Y. Zhang, S. Poonja, and A. Roorda, “Adaptive optics scanning laser ophthalmoscope using a micro-electro-mechanical (MEMS) deformable mirror,” Proc. SPIE6138, 61380Z (2006). [CrossRef]
  44. C. A. Curcio, J. B. Presley, C. L. Millican, and N. E. Medeiros, “Basal deposits and drusen in eyes with age-related maculopathy: evidence for solid lipid particles,” Exp. Eye Res.80(6), 761–775 (2005). [CrossRef] [PubMed]
  45. J. D. Huang, J. B. Presley, M. F. Chimento, C. A. Curcio, and M. Johnson, “Age-related changes in human macular Bruch’s membrane as seen by quick-freeze/deep-etch,” Exp. Eye Res.85(2), 202–218 (2007). [CrossRef] [PubMed]
  46. C. A. Curcio, M. Johnson, J.-D. Huang, and M. Rudolf, “Aging, age-related macular degeneration, and the Response-to-Retention of apolipoprotein B-containing lipoproteins,” Prog. Retin. Eye Res.28(6), 393–422 (2009). [CrossRef] [PubMed]
  47. R. F. Mullins, L. V. Johnson, D. H. Anderson, and G. S. Hageman, “Characterization of drusen-associated glycoconjugates,” Ophthalmology104(2), 288–294 (1997). [CrossRef] [PubMed]
  48. C. M. Li, M. E. Clark, M. Rudolf, and C. A. Curcio, “Distribution and composition of esterified and unesterified cholesterol in extra-macular drusen,” Exp. Eye Res.85(2), 192–201 (2007). [CrossRef] [PubMed]
  49. V. Luibl, J. M. Isas, R. Kayed, C. G. Glabe, R. Langen, and J. Chen, “Drusen deposits associated with aging and age-related macular degeneration contain nonfibrillar amyloid oligomers,” J. Clin. Invest.116(2), 378–385 (2006). [CrossRef] [PubMed]
  50. S. H. Sarks, D. Van Driel, L. Maxwell, and M. Killingsworth, “Softening of drusen and subretinal neovascularization,” Trans. Ophthalmol. Soc. U. K.100(3), 414–422 (1980). [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: AVI (4066 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited