OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 5, Iss. 3 — Mar. 1, 2014
  • pp: 800–816

Neurotoxic effects of indocyanine green -cerebellar granule cell culture viability study

Beata Toczylowska, Elzbieta Zieminska, Grazyna Goch, Daniel Milej, Anna Gerega, and Adam Liebert  »View Author Affiliations

Biomedical Optics Express, Vol. 5, Issue 3, pp. 800-816 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1268 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The aim of this study was to examine neurotoxicity indocyanine green (ICG). We assessed viability of primary cerebellar granule cell culture (CGC) exposed to ICG to test two mechanisms that could be the first triggers causing neuronal toxicity: imbalance in calcium homeostasis and the degree of oligomerization of ICG molecules. We have observed this imbalance in CGC after exposure to 75-125μΜ ICG and dose and application sequence dependent protective effect of Gadovist on surviving neurons in vitro when used with ICG. Spectroscopic studies suggest the major cause of toxicity of the ICG is connected with oligomers formation. ICG at concentration of 25 μM (which is about 4 times higher than the highest concentration of ICG in the brain applied in in-vivo human studies) is not neurotoxic in the cell culture.

© 2014 Optical Society of America

OCIS Codes
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology
(170.1530) Medical optics and biotechnology : Cell analysis
(170.1610) Medical optics and biotechnology : Clinical applications
(170.6280) Medical optics and biotechnology : Spectroscopy, fluorescence and luminescence

ToC Category:
Molecular Imaging and Probe Development

Original Manuscript: December 17, 2013
Revised Manuscript: February 8, 2014
Manuscript Accepted: February 10, 2014
Published: February 19, 2014

Beata Toczylowska, Elzbieta Zieminska, Grazyna Goch, Daniel Milej, Anna Gerega, and Adam Liebert, "Neurotoxic effects of indocyanine green -cerebellar granule cell culture viability study," Biomed. Opt. Express 5, 800-816 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Hope-Ross, L. A. Yannuzzi, E. S. Gragoudas, D. R. Guyer, J. S. Slakter, J. A. Sorenson, S. Krupsky, D. A. Orlock, and C. A. Puliafito, “Adverse reactions due to indocyanine green,” Ophthalmology101(3), 529–533 (1994). [CrossRef] [PubMed]
  2. B. F. Hochheimer, “Angiography of the retina with indocyanine green,” Arch. Ophthalmol.86(5), 564–565 (1971). [CrossRef] [PubMed]
  3. J. Fishbaugh, “Retina: indocyanine green (ICG) angiography,” Insight19(3), 30–32 (1994). [PubMed]
  4. J. Caesar, S. Shaldon, L. Chiandussi, L. Guevara, and S. Sherlock, “The use of indocyanine green in the measurement of hepatic blood flow and as a test of hepatic function,” Clin. Sci.21, 43–57 (1961). [PubMed]
  5. A. El-Desoky, A. M. Seifalian, M. Cope, D. T. Delpy, and B. R. Davidson, “Experimental study of liver dysfunction evaluated by direct indocyanine green clearance using near infrared spectroscopy,” Br. J. Surg.86(8), 1005–1011 (1999). [CrossRef] [PubMed]
  6. T. Ishizawa, N. Fukushima, J. Shibahara, K. Masuda, S. Tamura, T. Aoki, K. Hasegawa, Y. Beck, M. Fukayama, and N. Kokudo, “Real-time identification of liver cancers by using indocyanine green fluorescent imaging,” Cancer115(11), 2491–2504 (2009). [CrossRef] [PubMed]
  7. H. Shinohara, A. Tanaka, T. Kitai, N. Yanabu, T. Inomoto, S. Satoh, E. Hatano, Y. Yamaoka, and K. Hirao, “Direct measurement of hepatic indocyanine green clearance with near-infrared spectroscopy: separate evaluation of uptake and removal,” Hepatology23(1), 137–144 (1996). [CrossRef] [PubMed]
  8. W. Baulig, E. O. Bernhard, D. Bettex, D. Schmidlin, and E. R. Schmid, “Cardiac output measurement by pulse dye densitometry in cardiac surgery,” Anaesthesia60(10), 968–973 (2005). [CrossRef] [PubMed]
  9. F. Bremer, A. Schiele, and K. Tschaikowsky, “Cardiac output measurement by pulse dye densitometry: a comparison with the Fick’s principle and thermodilution method,” Intensive Care Med.28(4), 399–405 (2002). [CrossRef] [PubMed]
  10. M. Haruna, K. Kumon, N. Yahagi, Y. Watanabe, Y. Ishida, N. Kobayashi, and T. Aoyagi, “Blood volume measurement at the bedside using ICG pulse spectrophotometry,” Anesthesiology89(6), 1322–1328 (1998). [CrossRef] [PubMed]
  11. T. Imai, C. Mitaka, T. Nosaka, A. Koike, S. Ohki, Y. Isa, and F. Kunimoto, “Accuracy and repeatability of blood volume measurement by pulse dye densitometry compared to the conventional method using 51Cr-labeled red blood cells,” Intensive Care Med.26(9), 1343–1349 (2000). [CrossRef] [PubMed]
  12. J. M. Maarek, D. P. Holschneider, J. Harimoto, J. Yang, O. U. Scremin, and E. H. Rubinstein, “Measurement of cardiac output with indocyanine green transcutaneous fluorescence dilution technique,” Anesthesiology100(6), 1476–1483 (2004). [CrossRef] [PubMed]
  13. M. Reekers, M. J. Simon, F. Boer, R. A. Mooren, J. W. van Kleef, A. Dahan, and J. Vuyk, “Cardiovascular monitoring by pulse dye densitometry or arterial indocyanine green dilution,” Anesth. Analg.109(2), 441–446 (2009). [CrossRef] [PubMed]
  14. S. G. Sakka, K. Reinhart, K. Wegscheider, and A. Meier-Hellmann, “Comparison of cardiac output and circulatory blood volumes by transpulmonary thermo-dye dilution and transcutaneous indocyanine green measurement in critically ill patients,” Chest121(2), 559–565 (2002). [CrossRef] [PubMed]
  15. S. Balaiya, V. S. Brar, R. K. Murthy, and K. Chalam, “Effects of Indocyanine green on cultured retinal ganglion cells in-vitro,” BMC Res. Notes2(1), 236 (2009). [CrossRef] [PubMed]
  16. P. Saikia, T. Maisch, K. Kobuch, T. L. Jackson, W. Bäumler, R. M. Szeimies, V. P. Gabel, and J. Hillenkamp, “Safety testing of indocyanine green in an ex vivo porcine retina model,” Invest. Ophthalmol. Vis. Sci.47(11), 4998–5003 (2006). [CrossRef] [PubMed]
  17. T. L. Jackson, “Indocyanine green accused,” Br. J. Ophthalmol.89(4), 395–396 (2005). [CrossRef] [PubMed]
  18. H. Vogler, J. Platzek, G. Schuhmann-Giampieri, T. Frenzel, H. J. Weinmann, B. Radüchel, and W. R. Press, “Pre-clinical evaluation of gadobutrol: a new, neutral, extracellular contrast agent for magnetic resonance imaging,” Eur. J. Radiol.21(1), 1–10 (1995). [CrossRef] [PubMed]
  19. M. Diop, K. M. Tichauer, J. T. Elliott, M. Migueis, T. Y. Lee, and K. St Lawrence, “Comparison of time-resolved and continuous-wave near-infrared techniques for measuring cerebral blood flow in piglets,” J. Biomed. Opt.15(5), 057004 (2010). [CrossRef] [PubMed]
  20. W. M. Kuebler, A. Sckell, O. Habler, M. Kleen, G. E. H. Kuhnle, M. Welte, K. Messmer, and A. E. Goetz, “Noninvasive measurement of regional cerebral blood flow by near-infrared spectroscopy and indocyanine green,” J. Cereb. Blood Flow Metab.18(4), 445–456 (1998). [CrossRef] [PubMed]
  21. J. Patel, K. Marks, I. Roberts, D. Azzopardi, and A. D. Edwards, “Measurement of cerebral blood flow in newborn infants using near infrared spectroscopy with indocyanine green,” Pediatr. Res.43(1), 34–39 (1998). [CrossRef] [PubMed]
  22. E. Keller, A. Nadler, H. Alkadhi, S. S. Kollias, Y. Yonekawa, and P. Niederer, “Noninvasive measurement of regional cerebral blood flow and regional cerebral blood volume by near-infrared spectroscopy and indocyanine green dye dilution,” Neuroimage20(2), 828–839 (2003). [CrossRef] [PubMed]
  23. P. Hopton, T. S. Walsh, and A. Lee, “Measurement of cerebral blood volume using near-infrared spectroscopy and indocyanine green elimination,” J. Appl. Physiol.87(5), 1981–1987 (1999). [PubMed]
  24. T. S. Leung, N. Aladangady, C. E. Elwell, D. T. Delpy, and K. Costeloe, “A new method for the measurement of cerebral blood volume and total circulating blood volume using near infrared spatially resolved spectroscopy and indocyanine green: Application and validation in neonates,” Pediatr. Res.55(1), 134–141 (2004). [CrossRef] [PubMed]
  25. A. Gerega, D. Milej, W. Weigl, M. Botwicz, N. Zolek, M. Kacprzak, W. Wierzejski, B. Toczylowska, E. Mayzner-Zawadzka, R. Maniewski, and A. Liebert, “Multiwavelength time-resolved detection of fluorescence during the inflow of indocyanine green into the adult’s brain,” J. Biomed. Opt.17(8), 087001 (2012). [CrossRef] [PubMed]
  26. D. Milej, A. Gerega, N. Zołek, W. Weigl, M. Kacprzak, P. Sawosz, J. Mączewska, K. Fronczewska, E. Mayzner-Zawadzka, L. Królicki, R. Maniewski, and A. Liebert, “Time-resolved detection of fluorescent light during inflow of ICG to the brain-a methodological study,” Phys. Med. Biol.57(20), 6725–6742 (2012). [CrossRef] [PubMed]
  27. A. Liebert, H. Wabnitz, H. Obrig, R. Erdmann, M. Möller, R. Macdonald, H. Rinneberg, A. Villringer, and J. Steinbrink, “Non-invasive detection of fluorescence from exogenous chromophores in the adult human brain,” Neuroimage31(2), 600–608 (2006). [CrossRef] [PubMed]
  28. C. Terborg, S. Bramer, S. Harscher, M. Simon, and O. W. Witte, “Bedside assessment of cerebral perfusion reductions in patients with acute ischaemic stroke by near-infrared spectroscopy and indocyanine green,” J. Neurol. Neurosurg. Psychiatry75(1), 38–42 (2004). [PubMed]
  29. H. Obrig and J. Steinbrink, “Non-invasive optical imaging of stroke,” Philos. Trans. A Math, Phys. Eng Sci.369(1955), 4470–4494 (2011). [CrossRef]
  30. H. Obrig, “NIRS in clinical neurology - a 'promising' tool?” Neuroimage85, 535–546 (2013). [PubMed]
  31. C. Wack, T. Steger-Hartmann, L. Mylecraine, and R. Hofmeister, “Toxicological safety evaluation of gadobutrol,” Invest. Radiol.47(11), 611–623 (2012). [CrossRef] [PubMed]
  32. A. Schousboe, J. Drejer, G. H. Hansen, and E. Meier, “Cultured neurons as model systems for biochemical and pharmacological studies on receptors for neurotransmitter amino acids,” Dev. Neurosci.7(5-6), 252–262 (1985). [CrossRef] [PubMed]
  33. E. Ziemińska, A. Stafiej, and J. W. Łazarewicz, “Role of group I metabotropic glutamate receptors and NMDA receptors in homocysteine-evoked acute neurodegeneration of cultured cerebellar granule neurones,” Neurochem. Int.43(4-5), 481–492 (2003). [CrossRef] [PubMed]
  34. E. Zieminska, B. Toczylowska, A. Stafiej, and J. W. Lazarewicz, “Low molecular weight thiols reduce thimerosal neurotoxicity in vitro: modulation by proteins,” Toxicology276(3), 154–163 (2010). [CrossRef] [PubMed]
  35. F. B. Dietz and R. A. Jaffe, “Indocyanine green: evidence of neurotoxicity in spinal root axons,” Anesthesiology98(2), 516–520 (2003). [CrossRef] [PubMed]
  36. T. Desmettre, J. M. Devoisselle, and S. Mordon, “Fluorescence properties and metabolic features of indocyanine green (ICG) as related to angiography,” Surv. Ophthalmol.45(1), 15–27 (2000). [CrossRef] [PubMed]
  37. F. Rotermund, R. Weigand, and A. Penzkofer, “J-aggregation and disaggregation of indocyanine green in water,” Chem. Phys.220(3), 385–392 (1997). [CrossRef]
  38. R. Weigand, F. Rotermund, and A. Penzkofer, “Aggregation dependent absorption reduction of indocyanine green,” J. Phys. Chem. A101(42), 7729–7734 (1997). [CrossRef]
  39. J. F. Zhou, M. P. Chin, and S. A. Schafer, “Aggregation and degradation of mdocyanine green,” Proc. SPIE2128, 495–505 (1994). [CrossRef]
  40. E. Keller, H. Ishihara, A. Nadler, P. Niederer, B. Seifert, Y. Yonekawa, and K. Frei, “Evaluation of brain toxicity following near infrared light exposure after indocyanine green dye injection,” J. Neurosci. Methods117(1), 23–31 (2002). [CrossRef] [PubMed]
  41. A. Contestabile, “Cerebellar granule cells as a model to study mechanisms of neuronal apoptosis or survival in vivo and in vitro,” Cerebellum1(1), 41–55 (2002). [CrossRef] [PubMed]
  42. D. Milej, A. Gerega, M. Kacprzak, P. Sawosz, W. Weigl, R. Maniewski, and A. Liebert, “Time-resolved multi-channel optical system for assessment of brain oxygenation and perfusion by monitoring of diffuse reflectance and fluorescence,” Opto-Electron. Rev.22(1), 55–67 (2014). [CrossRef]
  43. W. Weigl, D. Milej, A. Gerega, B. Toczylowska, M. Kacprzak, P. Sawosz, M. Botwicz, R. Maniewski, E. Mayzner-Zawadzka, and A. Liebert, “Assessment of cerebral perfusion in post-traumatic brain injury patients with the use of ICG-bolus tracking method,” Neuroimage85(Pt 1), 555–565 (2014). [CrossRef] [PubMed]
  44. A. Liebert, P. Sawosz, D. Milej, M. Kacprzak, W. Weigl, M. Botwicz, J. Maczewska, K. Fronczewska, E. Mayzner-Zawadzka, L. Królicki, and R. Maniewski, “Assessment of inflow and washout of indocyanine green in the adult human brain by monitoring of diffuse reflectance at large source-detector separation,” J. Biomed. Opt.16(4), 046011 (2011). [CrossRef] [PubMed]
  45. N. Unno, M. Suzuki, N. Yamamoto, K. Inuzuka, D. Sagara, M. Nishiyama, H. Tanaka, and H. Konno, “Indocyanine green fluorescence angiography for intraoperative assessment of blood flow: a feasibility study,” Eur. J. Vasc. Endovasc. Surg.35(2), 205–207 (2008). [CrossRef] [PubMed]
  46. F. Ogata, M. Narushima, M. Mihara, R. Azuma, Y. Morimoto, and I. Koshima, “Intraoperative lymphography using indocyanine green dye for near-infrared fluorescence labeling in lymphedema,” Ann. Plast. Surg.59(2), 180–184 (2007). [CrossRef] [PubMed]
  47. E. M. Sevick-Muraca, R. Sharma, J. C. Rasmussen, M. V. Marshall, J. A. Wendt, H. Q. Pham, E. Bonefas, J. P. Houston, L. Sampath, K. E. Adams, D. K. Blanchard, R. E. Fisher, S. B. Chiang, R. Elledge, and M. E. Mawad, “Imaging of lymph flow in breast cancer patients after microdose administration of a near-infrared fluorophore: feasibility study,” Radiology246(3), 734–741 (2008). [CrossRef] [PubMed]
  48. J. C. Rasmussen, I. C. Tan, M. V. Marshall, C. E. Fife, and E. M. Sevick-Muraca, “Lymphatic imaging in humans with near-infrared fluorescence,” Curr. Opin. Biotechnol.20(1), 74–82 (2009). [CrossRef] [PubMed]
  49. M. Fujiwara, T. Mizukami, A. Suzuki, and H. Fukamizu, “Sentinel lymph node detection in skin cancer patients using real-time fluorescence navigation with indocyanine green: preliminary experience,” J. Plast. Reconstr. Aesthet. Surg.62(10), e373–e378 (2009). [CrossRef] [PubMed]
  50. S. L. Troyan, V. Kianzad, S. L. Gibbs-Strauss, S. Gioux, A. Matsui, R. Oketokoun, L. Ngo, A. Khamene, F. Azar, and J. V. Frangioni, “The FLARE intraoperative near-infrared fluorescence imaging system: a first-in-human clinical trial in breast cancer sentinel lymph node mapping,” Ann. Surg. Oncol.16(10), 2943–2952 (2009). [CrossRef] [PubMed]
  51. Y. Tsujino, K. Mizumoto, Y. Matsuzaka, H. Niihara, and E. Morita, “Fluorescence navigation with indocyanine green for detecting sentinel nodes in extramammary Paget’s disease and squamous cell carcinoma,” J. Dermatol.36(2), 90–94 (2009). [CrossRef] [PubMed]
  52. D. Murawa, C. Hirche, S. Dresel, and M. Hünerbein, “Sentinel lymph node biopsy in breast cancer guided by indocyanine green fluorescence,” Br. J. Surg.96(11), 1289–1294 (2009). [CrossRef] [PubMed]
  53. N. Unno, K. Inuzuka, M. Suzuki, N. Yamamoto, D. Sagara, M. Nishiyama, and H. Konno, “Preliminary experience with a novel fluorescence lymphography using indocyanine green in patients with secondary lymphedema,” J. Vasc. Surg.45(5), 1016–1021 (2007). [CrossRef] [PubMed]
  54. I. Miyashiro, N. Miyoshi, M. Hiratsuka, K. Kishi, T. Yamada, M. Ohue, H. Ohigashi, M. Yano, O. Ishikawa, and S. Imaoka, “Detection of sentinel node in gastric cancer surgery by indocyanine green fluorescence imaging: comparison with infrared imaging,” Ann. Surg. Oncol.15(6), 1640–1643 (2008). [CrossRef] [PubMed]
  55. N. Tagaya, R. Yamazaki, A. Nakagawa, A. Abe, K. Hamada, K. Kubota, and T. Oyama, “Intraoperative identification of sentinel lymph nodes by near-infrared fluorescence imaging in patients with breast cancer,” Am. J. Surg.195(6), 850–853 (2008). [CrossRef] [PubMed]
  56. S. Noura, M. Ohue, Y. Seki, K. Tanaka, M. Motoori, K. Kishi, I. Miyashiro, H. Ohigashi, M. Yano, O. Ishikawa, and Y. Miyamoto, “Feasibility of a lateral region sentinel node biopsy of lower rectal cancer guided by indocyanine green using a near-infrared camera system,” Ann. Surg. Oncol.17(1), 144–151 (2010). [CrossRef] [PubMed]
  57. M. Suzuki, N. Unno, N. Yamamoto, M. Nishiyama, D. Sagara, H. Tanaka, Y. Mano, and H. Konno, “Impaired lymphatic function recovered after great saphenous vein stripping in patients with varicose vein: venodynamic and lymphodynamic results,” J. Vasc. Surg.50(5), 1085–1091 (2009). [CrossRef] [PubMed]
  58. Y. Tajima, M. Murakami, K. Yamazaki, Y. Masuda, M. Kato, A. Sato, S. Goto, K. Otsuka, T. Kato, and M. Kusano, “Sentinel node mapping guided by indocyanine green fluorescence imaging during laparoscopic surgery in gastric cancer,” Ann. Surg. Oncol.17(7), 1787–1793 (2010). [CrossRef] [PubMed]
  59. T. Handa, R. G. Katare, S. Sasaguri, and T. Sato, “Preliminary experience for the evaluation of the intraoperative graft patency with real color charge-coupled device camera system: an advanced device for simultaneous capturing of color and near-infrared images during coronary artery bypass graft,” Interact. Cardiovasc. Thorac. Surg.9(2), 150–154 (2009). [CrossRef] [PubMed]
  60. J. S. Reynolds, T. L. Troy, R. H. Mayer, A. B. Thompson, D. J. Waters, K. K. Cornell, P. W. Snyder, and E. M. Sevick-Muraca, “Imaging of spontaneous canine mammary tumors using fluorescent contrast agents,” Photochem. Photobiol.70(1), 87–94 (1999). [CrossRef] [PubMed]
  61. T. Kitai, T. Inomoto, M. Miwa, and T. Shikayama, “Fluorescence navigation with indocyanine green for detecting sentinel lymph nodes in breast cancer,” Breast Cancer12(3), 211–215 (2005). [CrossRef] [PubMed]
  62. Y. Ogasawara, H. Ikeda, M. Takahashi, K. Kawasaki, and H. Doihara, “Evaluation of breast lymphatic pathways with indocyanine green fluorescence imaging in patients with breast cancer,” World J. Surg.32(9), 1924–1929 (2008). [CrossRef] [PubMed]
  63. B. D. Killory, P. Nakaji, L. F. Gonzales, F. A. Ponce, S. D. Wait, and R. F. Spetzler, “Prospective evaluation of surgical microscope-integrated intraoperative near-infrared indocyanine green angiography during cerebral arteriovenous malformation surgery,” Neurosurgery65(3), 456–462 (2009). [CrossRef] [PubMed]
  64. T. R. Garski, B. J. Staller, G. Hepner, V. S. Banka, and R. A. Finney., “Adverse Reactions After Administration of Indocyanine Green,” JAMA240(7), 635b (1978). [CrossRef] [PubMed]
  65. C. Holm, M. Mayr, E. Höfter, and M. Ninkovic, “Perfusion zones of the DIEP flap revisited: a clinical study,” Plast. Reconstr. Surg.117(1), 37–43 (2006). [CrossRef] [PubMed]
  66. T. Ishizawa, Y. Bandai, and N. Kokudo, “Fluorescent cholangiography using indocyanine green for laparoscopic cholecystectomy: an initial experience,” Arch. Surg.144(4), 381–382 (2009). [CrossRef] [PubMed]
  67. R. Speich, B. Saesseli, U. Hoffmann, K. A. Neftel, and J. Reichen, “Anaphylactoid reactions after indocyanine-green administration,” Ann. Intern. Med.109(4), 345–346 (1988). [CrossRef] [PubMed]
  68. T. W. Olsen, J. I. Lim, A. Capone, R. A. Myles, and J. P. Gilman, “Anaphylactic shock following indocyanine green angiography,” Arch. Ophthalmol.114(1), 97 (1996). [CrossRef] [PubMed]
  69. G. R. Cherrick, S. W. Stein, C. M. Leevy, and C. S. Davidson, “Indocyanine green: observations on its physical properties, plasma decay, and hepatic extraction,” J. Clin. Invest.39(4), 592–600 (1960). [CrossRef] [PubMed]
  70. I. J. Fox and E. H. Wood, “Indocyanine green: physical and physiologic properties,” Proc. Staff Meet. Mayo Clin.35, 732–744 (1960). [PubMed]
  71. K. J. Baker, “Binding of sulfobromophthalein (BSP) sodium and indocyanine green (ICG) by plasma alpha-1 lipoproteins,” Proc. Soc. Exp. Biol. Med.122(4), 957–963 (1966). [CrossRef] [PubMed]
  72. H. Kunikata, H. Tomita, T. Abe, H. Murata, Y. Sagara, H. Sato, Y. Wada, N. Fuse, Y. Nakagawa, M. Tamai, and K. Nishida, “Hypothermia protects cultured human retinal pigment epithelial cells against indocyanine green toxicity,” J. Ocul. Pharmacol. Ther.23(1), 35–39 (2007). [CrossRef] [PubMed]
  73. Y. Sato, H. Tomita, E. Sugano, H. Isago, M. Yoshida, and M. Tamai, “Evaluation of indocyanine green toxicity to rat retinas,” Ophthalmologica220(3), 153–158 (2006). [CrossRef] [PubMed]
  74. B. Hameed, D. M. Smith, J. J. Verrechio, J. D. Schmidt, L. E. Gillooley, M. C. Valenzano, S. A. Lewis, and J. M. Mullin, “Indocyanine green alters transepithelial electrical parameters of the distal colon,” Dig. Dis. Sci.49(9), 1381–1386 (2004). [CrossRef] [PubMed]
  75. E. Ziemińska, A. Stafiej, B. Toczyłowska, and J. W. Lazarewicz, “Synergistic neurotoxicity of oxygen-glucose deprivation and tetrabromobisphenol A in vitro: role of oxidative stress,” Pharmacol. Rep.64(5), 1166–1178 (2012). [PubMed]
  76. M. Takahashi, H. Tsutsui, C. Murayama, T. Miyazawa, and B. Fritz-Zieroth, “Neurotoxicity of gadolinium contrast agents for magnetic resonance imaging in rats with osmotically disrupted blood-brain barrier,” Magn. Reson. Imaging14(6), 619–623 (1996). [CrossRef] [PubMed]
  77. D. E. Ray, J. B. Cavanagh, C. C. Nolan, and S. C. Williams, “Neurotoxic effects of gadopentetate dimeglumine: behavioral disturbance and morphology after intracerebroventricular injection in rats,” AJNR Am. J. Neuroradiol.17(2), 365–373 (1996). [PubMed]
  78. X. Feng, Q. Xia, L. Yuan, X. Yang, and K. Wang, “Impaired mitochondrial function and oxidative stress in rat cortical neurons: implications for gadolinium-induced neurotoxicity,” Neurotoxicology31(4), 391–398 (2010). [CrossRef] [PubMed]
  79. M. P. Mattson and Y. Goodman, “Different amyloidogenic peptides share a similar mechanism of neurotoxicity involving reactive oxygen species and calcium,” Brain Res.676(1), 219–224 (1995). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited