OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 5, Iss. 3 — Mar. 1, 2014
  • pp: 817–831

Assessing blood coagulation status with laser speckle rheology

Markandey M. Tripathi, Zeinab Hajjarian, Elizabeth M. Van Cott, and Seemantini K. Nadkarni  »View Author Affiliations


Biomedical Optics Express, Vol. 5, Issue 3, pp. 817-831 (2014)
http://dx.doi.org/10.1364/BOE.5.000817


View Full Text Article

Enhanced HTML    Acrobat PDF (3504 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We have developed and investigated a novel optical approach, Laser Speckle Rheology (LSR), to evaluate a patient’s coagulation status by measuring the viscoelastic properties of blood during coagulation. In LSR, a blood sample is illuminated with laser light and temporal speckle intensity fluctuations are measured using a high-speed CMOS camera. During blood coagulation, changes in the viscoelastic properties of the clot restrict Brownian displacements of light scattering centers within the sample, altering the rate of speckle intensity fluctuations. As a result, blood coagulation status can be measured by relating the time scale of speckle intensity fluctuations with clinically relevant coagulation metrics including clotting time and fibrinogen content. Our results report a close correlation between coagulation metrics measured using LSR and conventional coagulation results of activated partial thromboplastin time, prothrombin time and functional fibrinogen levels, creating the unique opportunity to evaluate a patient’s coagulation status in real-time at the point of care.

© 2014 Optical Society of America

OCIS Codes
(030.6140) Coherence and statistical optics : Speckle
(120.4820) Instrumentation, measurement, and metrology : Optical systems
(170.1610) Medical optics and biotechnology : Clinical applications
(170.4580) Medical optics and biotechnology : Optical diagnostics for medicine
(290.4210) Scattering : Multiple scattering

ToC Category:
Speckle Imaging and Diagnostics

History
Original Manuscript: November 6, 2013
Revised Manuscript: December 30, 2013
Manuscript Accepted: January 2, 2014
Published: February 24, 2014

Citation
Markandey M. Tripathi, Zeinab Hajjarian, Elizabeth M. Van Cott, and Seemantini K. Nadkarni, "Assessing blood coagulation status with laser speckle rheology," Biomed. Opt. Express 5, 817-831 (2014)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-5-3-817


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. F. Bunn and J. C. Aster, Pathophysiology of Blood Disorders (McGraw-Hill Medical, United States, 2011).
  2. M. Levi, “Disseminated intravascular coagulation: a disease-specific approach,” Semin. Thromb. Hemost.36(4), 363–365 (2010). [CrossRef] [PubMed]
  3. E. B. Devine, L. N. Chan, J. Babigumira, H. Kao, T. Drysdale, D. Reilly, and S. Sullivan, “Postoperative acquired coagulopathy: a pilot study to determine the impact on clinical and economic outcomes,” Pharmacotherapy30(10), 994–1003 (2010). [CrossRef] [PubMed]
  4. P. Innerhofer and J. Kienast, “Principles of perioperative coagulopathy,” Best Pract. Res. Clin. Anaesthesiol.24(1), 1–14 (2010). [CrossRef] [PubMed]
  5. J. C. Duchesne and J. B. Holcomb, “Damage control resuscitation: addressing trauma-induced coagulopathy,” Br. J. Hosp. Med. (Lond.)70(1), 22–25 (2009). [PubMed]
  6. B. Hudzik, J. Szkodzinski, and L. Polonski, “Pulmonary embolism and intra-aortic thrombosis in essential thrombocythaemia,” Br. J. Haematol.158(5), 562 (2012). [CrossRef] [PubMed]
  7. G. Lippi, M. Franchini, M. Montagnana, and E. J. Favaloro, “Inherited disorders of blood coagulation,” Ann. Med.44(5), 405–418 (2012). [CrossRef] [PubMed]
  8. A. Tripodi and P. M. Mannucci, “The coagulopathy of chronic liver disease,” N. Engl. J. Med.365(2), 147–156 (2011). [CrossRef] [PubMed]
  9. H. Saito, T. Matsushita, and T. Kojima, “Historical perspective and future direction of coagulation research,” J. Thromb. Haemost.9(Suppl 1), 352–363 (2011). [CrossRef] [PubMed]
  10. D. Whiting and J. A. Dinardo, “TEG and ROTEM: Technology and clinical applications,” Am. J. Hematol. (2013).
  11. M. Kaibara, “Rheology of blood coagulation,” Biorheology33(2), 101–117 (1996). [CrossRef] [PubMed]
  12. C. E. Dempfle, T. Kälsch, E. Elmas, N. Suvajac, T. Lücke, E. Münch, and M. Borggrefe, “Impact of fibrinogen concentration in severely ill patients on mechanical properties of whole blood clots,” Blood Coagul. Fibrinolysis19(8), 765–770 (2008). [CrossRef] [PubMed]
  13. S. K. Nadkarni, B. E. Bouma, T. Helg, R. Chan, E. Halpern, A. Chau, M. S. Minsky, J. T. Motz, S. L. Houser, and G. J. Tearney, “Characterization of atherosclerotic plaques by laser speckle imaging,” Circulation112(6), 885–892 (2005). [CrossRef] [PubMed]
  14. S. K. Nadkarni, A. Bilenca, B. E. Bouma, and G. J. Tearney, “Measurement of fibrous cap thickness in atherosclerotic plaques by spatiotemporal analysis of laser speckle images,” J. Biomed. Opt.11(2), 021006 (2006). [CrossRef] [PubMed]
  15. S. K. Nadkarni, B. E. Bouma, D. Yelin, A. Gulati, and G. J. Tearney, “Laser Speckle Imaging of atherosclerotic plaques through optical fiber bundles,” J. Biomed. Opt.13(5), 054016 (2008). [CrossRef] [PubMed]
  16. Z. Hajjarian, J. Xi, F. A. Jaffer, G. J. Tearney, and S. K. Nadkarni, “Intravascular laser speckle imaging catheter for the mechanical evaluation of the arterial wall,” J. Biomed. Opt.16(2), 026005 (2011). [CrossRef] [PubMed]
  17. Z. Hajjarian and S. K. Nadkarni, “Evaluating the viscoelastic properties of tissue from laser speckle fluctuations,” Sci. Rep.2, 316 (2012). [CrossRef] [PubMed]
  18. S. K. Nadkarni, B. E. Bouma, J. de Boer, and G. J. Tearney, “Evaluation of collagen in atherosclerotic plaques: the use of two coherent laser-based imaging methods,” Lasers Med. Sci.24(3), 439–445 (2009). [CrossRef] [PubMed]
  19. Z. Hajjarian and S. K. Nadkarni, “Evaluation and correction for optical scattering variations in laser speckle rheology of biological fluids,” PLoS ONE8(5), e65014 (2013). [CrossRef] [PubMed]
  20. J. W. Goodman, Speckle phenomena in optics: theory and applications (Roberts and Company Publishers, United States, 2007).
  21. D. A. Weitz and D. J. Pine, “Diffusing-Wave Spectroscopy,” in Dynamic Light Scattering, W. Brown, ed. (Oxford Univ. Press, New York, 1993).
  22. T. G. Mason, H. Gang, and D. A. Weitz, “Diffusing-wave-spectroscopy measurements of viscoelasticity of complex fluids,” J. Opt. Soc. Am. A14(1), 139–149 (1997). [CrossRef]
  23. B. R. Dasgupta and D. A. Weitz, “Microrheology of cross-linked polyacrylamide networks,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.71(2), 021504 (2005). [CrossRef] [PubMed]
  24. G. Young, R. Zhang, R. Miller, D. Yassin, and D. J. Nugent, “Comparison of kaolin and tissue factor activated thromboelastography in haemophilia,” Haemophilia16(3), 518–524 (2010). [PubMed]
  25. D. Viuff, S. R. Andersen, B. B. SÃ. Rensen, and S. Lethagen, “Optimizing thrombelastography (TEG) assay conditions to monitor rFVIIa (NovoSeven®) therapy in haemophilia a patients,” Thromb. Res.126, 144–149 (2010). [CrossRef] [PubMed]
  26. P. I. Johansson, L. Bochsen, S. Andersen, and D. Viuff, “Investigation of the effect of kaolin and tissue-factor-activated citrated whole blood, on clot-forming variables, as evaluated by thromboelastography,” Transfusion48(11), 2377–2383 (2008). [CrossRef] [PubMed]
  27. E. Gonzalez, F. M. Pieracci, E. E. Moore, and J. L. Kashuk, “Coagulation abnormalities in the trauma patient: the role of point-of-care thromboelastography,” Semin. Thromb. Hemost.36(7), 723–737 (2010). [CrossRef] [PubMed]
  28. L. Raffini, A. Schwed, X. L. Zheng, M. Tanzer, S. Nicolson, J. W. Gaynor, and D. Jobes, “Thromboelastography of patients after fontan compared with healthy children,” Pediatr. Cardiol.30(6), 771–776 (2009). [CrossRef] [PubMed]
  29. M. Sjödahl and L. R. Benckert, “Systematic and random errors in electronic speckle photography,” Appl. Opt.33(31), 7461–7471 (1994). [CrossRef] [PubMed]
  30. D. Li, D. P. Kelly, R. Kirner, and J. T. Sheridan, “Speckle orientation in paraxial optical systems,” Appl. Opt.51(4), A1–A10 (2012). [CrossRef] [PubMed]
  31. S. J. Kirkpatrick, D. D. Duncan, and E. M. Wells-Gray, “Detrimental effects of speckle-pixel size matching in laser speckle contrast imaging,” Opt. Lett.33(24), 2886–2888 (2008). [CrossRef] [PubMed]
  32. E. M. VanCott and M. Laposata, “Coagulation,” in The Laboratory Test Handbook, 5th ed., D. S. Jacobs, D. K. Oxley, and W. R. DeMott, eds. (Lexi-comp, Cleveland, 2001), pp. 327–358.
  33. D. A. Boas and A. K. Dunn, “Laser speckle contrast imaging in biomedical optics,” J. Biomed. Opt.15(1), 011109 (2010). [CrossRef] [PubMed]
  34. O. B. Thompson and M. K. Andrews, “Tissue perfusion measurements: multiple-exposure laser speckle analysis generates laser Doppler-like spectra,” J. Biomed. Opt.15(2), 027015 (2010). [CrossRef] [PubMed]
  35. T. Lee, L. Tchvialeva, H. Lui, H. Zeng, and D. McLean, “In-Vivo Skin Roughness Measurement by Laser Speckle,” in Fringe 2013, W. Osten, ed. (Springer Berlin Heidelberg, 2014), pp. 933–936.
  36. B. R. Dasgupta, S. Y. Tee, J. C. Crocker, B. J. Frisken, and D. A. Weitz, “Microrheology of polyethylene oxide using diffusing wave spectroscopy and single scattering,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.65(5), 051505 (2002). [CrossRef] [PubMed]
  37. T. G. Mason and D. A. Weitz, “Optical measurements of frequency-dependent linear viscoelastic moduli of complex fluids,” Phys. Rev. Lett.74(7), 1250–1253 (1995). [CrossRef] [PubMed]
  38. D. J. Pine, D. A. Weitz, P. M. Chaikin, and E. Herbolzheimer, “Diffusing wave spectroscopy,” Phys. Rev. Lett.60(12), 1134–1137 (1988). [CrossRef] [PubMed]
  39. L. Cipelletti and D. A. Weitz, “Ultralow-angle dynamic light scattering with a charge coupled device camera based multispeckle, multitau correlator,” Rev. Sci. Instrum.70(8), 3214 (1999). [CrossRef]
  40. P. A. Lemieux and D. J. Durian, “Investigating non-Gaussian scattering processes by using nth-order intensity correlation functions,” J. Opt. Soc. Am. A16(7), 1651–1664 (1999). [CrossRef]
  41. T. G. Mason, “Estimating the viscoelastic moduli of complex fluids using the generalized Stokes-Einstein equation,” Rheol. Acta39(4), 371–378 (2000). [CrossRef]
  42. F. Scheffold, F. Cardinaux, S. Romer, P. Schurtenberger, S. Skipetrov, and L. Cipelletti, “Optical Microrheology of Soft Complex Materials,” in Wave Scattering in Complex Media: From Theory to Applications, B. Tiggelen and S. Skipetrov, eds. (Springer Netherlands, 2003), pp. 553–564.
  43. D. Irwin, L. Dong, Y. Shang, R. Cheng, M. Kudrimoti, S. D. Stevens, and G. Yu, “Influences of tissue absorption and scattering on diffuse correlation spectroscopy blood flow measurements,” Biomed. Opt. Express2(7), 1969–1985 (2011). [CrossRef] [PubMed]
  44. A. Mazhar, D. J. Cuccia, T. B. Rice, S. A. Carp, A. J. Durkin, D. A. Boas, B. Choi, and B. J. Tromberg, “Laser speckle imaging in the spatial frequency domain,” Biomed. Opt. Express2(6), 1553–1563 (2011). [CrossRef] [PubMed]
  45. T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys.19(4), 879–888 (1992). [CrossRef] [PubMed]
  46. J. W. Weisel, “The mechanical properties of fibrin for basic scientists and clinicians,” Biophys. Chem.112(2-3), 267–276 (2004). [CrossRef] [PubMed]
  47. S. Niewiarowski, E. Regoeczi, G. J. Stewart, A. F. Senyl, and J. F. Mustard, “Platelet interaction with polymerizing fibrin,” J. Clin. Invest.51(3), 685–700 (1972). [CrossRef] [PubMed]
  48. J. Thai, E. J. Reynolds, N. Natalia, C. Cornelissen, H. J. Lemmens, C. C. Hill, and P. J. van der Starre, “Comparison between RapidTEG® and conventional thromboelastography in cardiac surgery patients,” Br. J. Anaesth.106(4), 605–606 (2011). [CrossRef] [PubMed]
  49. T. J. Cheng, H. C. Chang, and T. M. Lin, “A piezoelectric quartz crystal sensor for the determination of coagulation time in plasma and whole blood,” Biosens. Bioelectron.13(2), 147–156 (1998). [CrossRef] [PubMed]
  50. L. Müller, S. Sinn, H. Drechsel, C. Ziegler, H. P. Wendel, H. Northoff, and F. K. Gehring, “Investigation of prothrombin time in human whole-blood samples with a quartz crystal biosensor,” Anal. Chem.82(2), 658–663 (2010). [CrossRef] [PubMed]
  51. H. Muramatsu, K. Kimura, T. Ataka, R. Homma, Y. Miura, and I. Karube, “A quartz crystal viscosity sensor for monitoring coagulation reaction and its application to a multichannel coagulation detector,” Biosens. Bioelectron.6(4), 353–358 (1991). [CrossRef] [PubMed]
  52. L. G. Puckett, G. Barrett, D. Kouzoudis, C. Grimes, and L. G. Bachas, “Monitoring blood coagulation with magnetoelastic sensors,” Biosens. Bioelectron.18(5-6), 675–681 (2003). [CrossRef] [PubMed]
  53. L. G. Puckett, J. K. Lewis, A. Urbas, X. Cui, D. Gao, and L. G. Bachas, “Magnetoelastic transducers for monitoring coagulation, clot inhibition, and fibrinolysis,” Biosens. Bioelectron.20(9), 1737–1743 (2005). [CrossRef] [PubMed]
  54. M. Jose, M. W. Kowarz, K. K. Sarbadhikari, and P. R. Ashe, “MEMS interstitial prothrombin time test,” US Patent 2009/0093697 A1 (Aug 11, 2008 2008).
  55. K. M. Hansson, K. Johansen, J. Wetterö, G. Klenkar, J. Benesch, I. Lundström, T. L. Lindahl, and P. Tengvall, “Surface plasmon resonance detection of blood coagulation and platelet adhesion under venous and arterial shear conditions,” Biosens. Bioelectron.23(2), 261–268 (2007). [CrossRef] [PubMed]
  56. T. P. Vikinge, K. M. Hansson, P. Sandström, B. Liedberg, T. L. Lindahl, I. Lundström, P. Tengvall, and F. Höök, “Comparison of surface plasmon resonance and quartz crystal microbalance in the study of whole blood and plasma coagulation,” Biosens. Bioelectron.15(11-12), 605–613 (2000). [CrossRef] [PubMed]
  57. R. Libgot-Callé, F. Ossant, Y. Gruel, P. Lermusiaux, and F. Patat, “High frequency ultrasound device to investigate the acoustic properties of whole blood during coagulation,” Ultrasound Med. Biol.34(2), 252–264 (2008). [CrossRef] [PubMed]
  58. C. C. Huang and S. H. Wang, “Assessment of blood coagulation under various flow conditions with ultrasound backscattering,” IEEE Trans. Biomed. Eng.54(12), 2223–2230 (2007). [CrossRef] [PubMed]
  59. J. L. Gennisson, S. Lerouge, and G. Cloutier, “Assessment by transient elastography of the viscoelastic properties of blood during clotting,” Ultrasound Med. Biol.32(10), 1529–1537 (2006). [CrossRef] [PubMed]
  60. Y. Piederrière, J. Cariou, Y. Guern, G. Le Brun, B. Le Jeune, J. Lotrian, J. F. Abgrall, and M. T. Blouch, “Evaluation of blood plasma coagulation dynamics by speckle analysis,” J. Biomed. Opt.9(2), 408–412 (2004). [CrossRef] [PubMed]
  61. M. Faivre, P. Peltié, A. Planat-Chrétien, M. L. Cosnier, M. Cubizolles, C. Nougier, C. Négrier, and P. Pouteau, “Coagulation dynamics of a blood sample by multiple scattering analysis,” J. Biomed. Opt.16(5), 057001 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited