OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 5, Iss. 4 — Apr. 1, 2014
  • pp: 1000–1013

Optical stimulation enables paced electrophysiological studies in embryonic hearts

Yves T. Wang, Shi Gu, Pei Ma, Michiko Watanabe, Andrew M. Rollins, and Michael W. Jenkins  »View Author Affiliations


Biomedical Optics Express, Vol. 5, Issue 4, pp. 1000-1013 (2014)
http://dx.doi.org/10.1364/BOE.5.001000


View Full Text Article

Enhanced HTML    Acrobat PDF (1875 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Cardiac electrophysiology plays a critical role in the development and function of the heart. Studies of early embryonic electrical activity have lacked a viable point stimulation technique to pace in vitro samples. Here, optical pacing by high-precision infrared stimulation is used to pace excised embryonic hearts, allowing electrophysiological parameters to be quantified during pacing at varying rates with optical mapping. Combined optical pacing and optical mapping enables electrophysiological studies in embryos under more physiological conditions and at varying heart rates, allowing detection of abnormal conduction and comparisons between normal and pathological electrical activity during development in various models.

© 2014 Optical Society of America

OCIS Codes
(120.3890) Instrumentation, measurement, and metrology : Medical optics instrumentation
(140.3460) Lasers and laser optics : Lasers
(140.6810) Lasers and laser optics : Thermal effects
(170.2520) Medical optics and biotechnology : Fluorescence microscopy

ToC Category:
Optogenetics and Optical Stimulation

History
Original Manuscript: December 17, 2013
Revised Manuscript: February 13, 2014
Manuscript Accepted: February 21, 2014
Published: February 28, 2014

Citation
Yves T. Wang, Shi Gu, Pei Ma, Michiko Watanabe, Andrew M. Rollins, and Michael W. Jenkins, "Optical stimulation enables paced electrophysiological studies in embryonic hearts," Biomed. Opt. Express 5, 1000-1013 (2014)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-5-4-1000


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. N. C. Chi, M. Bussen, K. Brand-Arzamendi, C. Ding, J. E. Olgin, R. M. Shaw, G. R. Martin, and D. Y. R. Stainier, “Cardiac conduction is required to preserve cardiac chamber morphology,” Proc. Natl. Acad. Sci. U.S.A.107(33), 14662–14667 (2010). [CrossRef] [PubMed]
  2. M. Radisic, H. Park, H. Shing, T. Consi, F. J. Schoen, R. Langer, L. E. Freed, and G. Vunjak-Novakovic, “Functional assembly of engineered myocardium by electrical stimulation of cardiac myocytes cultured on scaffolds,” Proc. Natl. Acad. Sci. U.S.A.101(52), 18129–18134 (2004). [CrossRef] [PubMed]
  3. J. T. Granados-Riveron and J. D. Brook, “The impact of mechanical forces in heart morphogenesis,” Circ Cardiovasc Genet5(1), 132–142 (2012). [CrossRef] [PubMed]
  4. B. Sankova, J. Benes, E. Krejci, L. Dupays, M. Theveniau-Ruissy, L. Miquerol, and D. Sedmera, “The effect of connexin40 deficiency on ventricular conduction system function during development,” Cardiovasc. Res.95(4), 469–479 (2012). [CrossRef] [PubMed]
  5. D. W. Benson, “Genetics of atrioventricular conduction disease in humans,” Anat. Rec. A Discov. Mol. Cell. Evol. Biol.280(2), 934–939 (2004). [CrossRef] [PubMed]
  6. J. P. P. Smits, M. W. Veldkamp, and A. A. M. Wilde, “Mechanisms of inherited cardiac conduction disease,” Europace7(2), 122–137 (2005). [CrossRef] [PubMed]
  7. A. S. Go, D. Mozaffarian, V. L. Roger, E. J. Benjamin, J. D. Berry, W. B. Borden, D. M. Bravata, S. Dai, E. S. Ford, C. S. Fox, S. Franco, H. J. Fullerton, C. Gillespie, S. M. Hailpern, J. A. Heit, V. J. Howard, M. D. Huffman, B. M. Kissela, S. J. Kittner, D. T. Lackland, J. H. Lichtman, L. D. Lisabeth, D. Magid, G. M. Marcus, A. Marelli, D. B. Matchar, D. K. McGuire, E. R. Mohler, C. S. Moy, M. E. Mussolino, G. Nichol, N. P. Paynter, P. J. Schreiner, P. D. Sorlie, J. Stein, T. N. Turan, S. S. Virani, N. D. Wong, D. Woo, M. B. Turner, and American Heart Association Statistics Committee and Stroke Statistics Subcommittee, “Heart disease and stroke statistics--2013 update: a report from the American Heart Association,” Circulation127(1), e6–e245 (2013). [CrossRef] [PubMed]
  8. I. R. Efimov, V. P. Nikolski, and G. Salama, “Optical imaging of the heart,” Circ. Res.95(1), 21–33 (2004). [CrossRef] [PubMed]
  9. V. Elharrar and B. Surawicz, “Cycle length effect on restitution of action potential duration in dog cardiac fibers,” Am. J. Physiol.244(6), H782–H792 (1983). [PubMed]
  10. B. C. Eloff, D. L. Lerner, K. A. Yamada, R. B. Schuessler, J. E. Saffitz, and D. S. Rosenbaum, “High resolution optical mapping reveals conduction slowing in connexin43 deficient mice,” Cardiovasc. Res.51(4), 681–690 (2001). [CrossRef] [PubMed]
  11. M. E. Josephson, L. N. Horowitz, A. Farshidi, J. F. Spear, J. A. Kastor, and E. N. Moore, “Recurrent sustained ventricular tachycardia. 2. Endocardial mapping,” Circulation57(3), 440–447 (1978). [CrossRef] [PubMed]
  12. K. Kamino, “Optical approaches to ontogeny of electrical activity and related functional organization during early heart development,” Physiol. Rev.71(1), 53–91 (1991). [PubMed]
  13. S. Rentschler, D. M. Vaidya, H. Tamaddon, K. Degenhardt, D. Sassoon, G. E. Morley, J. Jalife, and G. I. Fishman, “Visualization and functional characterization of the developing murine cardiac conduction system,” Development128(10), 1785–1792 (2001). [PubMed]
  14. M. Reckova, C. Rosengarten, A. deAlmeida, C. P. Stanley, A. Wessels, R. G. Gourdie, R. P. Thompson, and D. Sedmera, “Hemodynamics is a key epigenetic factor in development of the cardiac conduction system,” Circ. Res.93(1), 77–85 (2003). [CrossRef] [PubMed]
  15. D. Sedmera, M. Reckova, C. Rosengarten, M. I. Torres, R. G. Gourdie, and R. P. Thompson, “Optical mapping of electrical activation in the developing heart,” Microsc. Microanal.11(3), 209–215 (2005). [CrossRef] [PubMed]
  16. F. Rothenberg, M. Watanabe, B. Eloff, and D. Rosenbaum, “Emerging patterns of cardiac conduction in the chick embryo: waveform analysis with photodiode array-based optical imaging,” Dev. Dyn.233(2), 456–465 (2005). [CrossRef] [PubMed]
  17. A. A. Werdich, A. Brzezinski, D. Jeyaraj, M. Khaled Sabeh, E. Ficker, X. Wan, B. M. McDermott, C. A. Macrae, and D. S. Rosenbaum, “The zebrafish as a novel animal model to study the molecular mechanisms of mechano-electrical feedback in the heart,” Prog. Biophys. Mol. Biol.110(2-3), 154–165 (2012). [CrossRef] [PubMed]
  18. M. Bressan, G. Liu, and T. Mikawa, “Early mesodermal cues assign avian cardiac pacemaker fate potential in a tertiary heart field,” Science340(6133), 744–748 (2013). [CrossRef] [PubMed]
  19. D. B. McCreery, W. F. Agnew, T. G. Yuen, and L. Bullara, “Charge density and charge per phase as cofactors in neural injury induced by electrical stimulation,” IEEE Trans. Biomed. Eng.37(10), 996–1001 (1990). [CrossRef] [PubMed]
  20. S. Weidmann, “The electrical constants of Purkinje fibres,” J. Physiol.118(3), 348–360 (1952). [PubMed]
  21. S. Weidmann, “Electrical constants of trabecular muscle from mammalian heart,” J. Physiol.210(4), 1041–1054 (1970). [PubMed]
  22. F. G. Akar, B. J. Roth, and D. S. Rosenbaum, “Optical measurement of cell-to-cell coupling in intact heart using subthreshold electrical stimulation,” Am. J. Physiol. Heart Circ. Physiol.281(2), H533–H542 (2001). [PubMed]
  23. C. R. Butson and C. C. McIntyre, “Role of electrode design on the volume of tissue activated during deep brain stimulation,” J. Neural Eng.3(1), 1–8 (2006). [CrossRef] [PubMed]
  24. J. Wells, C. Kao, E. D. Jansen, P. Konrad, and A. Mahadevan-Jansen, “Application of infrared light for in vivo neural stimulation,” J. Biomed. Opt.10(6), 064003 (2005). [CrossRef] [PubMed]
  25. J. Wells, C. Kao, P. Konrad, T. Milner, J. Kim, A. Mahadevan-Jansen, and E. D. Jansen, “Biophysical mechanisms of transient optical stimulation of peripheral nerve,” Biophys. J.93(7), 2567–2580 (2007). [CrossRef] [PubMed]
  26. N. M. Fried, G. A. Lagoda, N. J. Scott, L.-M. Su, and A. L. Burnett, “Noncontact stimulation of the cavernous nerves in the rat prostate using a tunable-wavelength thulium fiber laser,” J. Endourol.22(3), 409–414 (2008). [CrossRef] [PubMed]
  27. A. D. Izzo, J. T. Walsh, H. Ralph, J. Webb, M. Bendett, J. Wells, and C.-P. Richter, “Laser stimulation of auditory neurons: effect of shorter pulse duration and penetration depth,” Biophys. J.94(8), 3159–3166 (2008). [CrossRef] [PubMed]
  28. A. I. Matic, A. M. Robinson, H. K. Young, B. Badofsky, S. M. Rajguru, S. Stock, and C.-P. Richter, “Behavioral and electrophysiological responses evoked by chronic infrared neural stimulation of the cochlea,” PLoS ONE8(3), e58189 (2013). [CrossRef] [PubMed]
  29. J. M. Cayce, R. M. Friedman, G. Chen, E. D. Jansen, A. Mahadevan-Jansen, and A. W. Roe, “Infrared neural stimulation of primary visual cortex in non-human primates,” Neuroimage84, 181–190 (2014). [CrossRef] [PubMed]
  30. E. J. Peterson and D. J. Tyler, “Motor neuron activation in peripheral nerves using infrared neural stimulation,” J. Neural Eng.11(1), 016001 (2014). [CrossRef] [PubMed]
  31. S. M. Rajguru, C.-P. Richter, A. I. Matic, G. R. Holstein, S. M. Highstein, G. M. Dittami, and R. D. Rabbitt, “Infrared photostimulation of the crista ampullaris,” J. Physiol.589(6), 1283–1294 (2011). [CrossRef] [PubMed]
  32. G. M. Dittami, S. M. Rajguru, R. A. Lasher, R. W. Hitchcock, and R. D. Rabbitt, “Intracellular calcium transients evoked by pulsed infrared radiation in neonatal cardiomyocytes,” J. Physiol.589(6), 1295–1306 (2011). [CrossRef] [PubMed]
  33. M. W. Jenkins, A. R. Duke, S. Gu, H. J. Chiel, H. Fujioka, M. Watanabe, E. D. Jansen, and A. M. Rollins, “Optical pacing of the embryonic heart,” Nat. Photonics4(9), 623–626 (2010). [CrossRef] [PubMed]
  34. M. W. Jenkins, Y. T. Wang, Y. Q. Doughman, M. Watanabe, Y. Cheng, and A. M. Rollins, “Optical pacing of the adult rabbit heart,” Biomed. Opt. Express4(9), 1626–1635 (2013). [CrossRef] [PubMed]
  35. M. G. Shapiro, K. Homma, S. Villarreal, C.-P. Richter, and F. Bezanilla, “Infrared light excites cells by changing their electrical capacitance,” Nat Commun3, 736 (2012). [CrossRef] [PubMed]
  36. V. Hamburger and H. L. Hamilton, “A series of normal stages in the development of the chick embryo,” J. Morphol.88(1), 49–92 (1951). [CrossRef] [PubMed]
  37. E. S. Boyden, F. Zhang, E. Bamberg, G. Nagel, and K. Deisseroth, “Millisecond-timescale, genetically targeted optical control of neural activity,” Nat. Neurosci.8(9), 1263–1268 (2005). [CrossRef] [PubMed]
  38. G. Nagel, T. Szellas, W. Huhn, S. Kateriya, N. Adeishvili, P. Berthold, D. Ollig, P. Hegemann, and E. Bamberg, “Channelrhodopsin-2, a directly light-gated cation-selective membrane channel,” Proc. Natl. Acad. Sci. U.S.A.100(24), 13940–13945 (2003). [CrossRef] [PubMed]
  39. L. M. Loew, L. B. Cohen, J. Dix, E. N. Fluhler, V. Montana, G. Salama, and J. Y. Wu, “A naphthyl analog of the aminostyryl pyridinium class of potentiometric membrane dyes shows consistent sensitivity in a variety of tissue, cell, and model membrane preparations,” J. Membr. Biol.130(1), 1–10 (1992). [CrossRef] [PubMed]
  40. M. L. Rein and J. M. Deussing, “The optogenetic (r)evolution,” Mol. Genet. Genomics287(2), 95–109 (2012). [CrossRef] [PubMed]
  41. T. Bruegmann, D. Malan, M. Hesse, T. Beiert, C. J. Fuegemann, B. K. Fleischmann, and P. Sasse, “Optogenetic control of heart muscle in vitro and in vivo,” Nat. Methods7(11), 897–900 (2010). [CrossRef] [PubMed]
  42. L. Kou, D. Labrie, and P. Chylek, “Refractive indices of water and ice in the 0.65- to 2.5-µm spectral range,” Appl. Opt.32(19), 3531–3540 (1993). [CrossRef] [PubMed]
  43. K. Oyama, A. Mizuno, S. A. Shintani, H. Itoh, T. Serizawa, N. Fukuda, M. Suzuki, and S. Ishiwata, “Microscopic heat pulses induce contraction of cardiomyocytes without calcium transients,” Biochem. Biophys. Res. Commun.417(1), 607–612 (2012). [CrossRef] [PubMed]
  44. K. Shoji, K. Ohashi, K. Sampei, M. Oikawa, and K. Mizuno, “Cytochalasin D acts as an inhibitor of the actin-cofilin interaction,” Biochem. Biophys. Res. Commun.424(1), 52–57 (2012). [CrossRef] [PubMed]
  45. J. P. Gordon, R. C. C. Leite, R. S. Moore, S. P. S. Porto, and J. R. Whinnery, “Long-Transient Effects in Lasers with Inserted Liquid Samples,” J. Appl. Phys.36(1), 3 (1965). [CrossRef]
  46. S. Lévy, B. Pouget, J. Clementy, M. Bemurat, and H. Bricaud, “Pacing-induced alternate Wenckebach periods: incidence and clinical significance,” Pacing Clin. Electrophysiol.2(6), 614–623 (1979). [CrossRef] [PubMed]
  47. M. L. Young, H. Gelband, and G. S. Wolff, “Atrial pacing-induced alternating Wenckebach periodicity and multilevel conduction block in children,” Am. J. Cardiol.57(1), 135–141 (1986). [CrossRef] [PubMed]
  48. D. Friedman, Lj. Duncanson, J. Glickstein, and J. Buyon, “A review of congenital heart block,” Images Paediatr. Cardiol.5(3), 36–48 (2003). [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

Supplementary Material


» Media 1: MP4 (3451 KB)     
» Media 2: MP4 (3805 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited