OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 5, Iss. 4 — Apr. 1, 2014
  • pp: 1114–1123

Repeatability of in vivo 3D lamina cribrosa microarchitecture using adaptive optics spectral domain optical coherence tomography

Zach Nadler, Bo Wang, Gadi Wollstein, Jessica E. Nevins, Hiroshi Ishikawa, Richard Bilonick, Larry Kagemann, Ian A. Sigal, R. Daniel Ferguson, Ankit Patel, Daniel X. Hammer, and Joel S. Schuman  »View Author Affiliations

Biomedical Optics Express, Vol. 5, Issue 4, pp. 1114-1123 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (2219 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate the repeatability of lamina cribrosa (LC) microarchitecture for in vivo 3D optical coherence tomography (OCT) scans of healthy, glaucoma suspects, and glaucomatous eyes. Eyes underwent two scans using a prototype adaptive optics spectral domain OCT (AO-SDOCT) device from which LC microarchitecture was semi-automatically segmented. LC segmentations were used to quantify pore and beam structure through several global microarchitecture parameters. Repeatability of LC microarchitecture was assessed qualitatively and quantitatively by calculating parameter imprecision. For all but one parameters (pore volume) measurement imprecision was <4.7% of the mean value, indicating good measurement reproducibility. Imprecision ranged between 27.3% and 54.5% of the population standard deviation for each parameter, while there was not a significant effect on imprecision due to disease status, indicating utility in testing for LC structural trends.

© 2014 Optical Society of America

OCIS Codes
(100.2000) Image processing : Digital image processing
(110.4500) Imaging systems : Optical coherence tomography
(170.1610) Medical optics and biotechnology : Clinical applications
(170.4470) Medical optics and biotechnology : Ophthalmology
(330.4460) Vision, color, and visual optics : Ophthalmic optics and devices

ToC Category:
Image Processing

Original Manuscript: November 26, 2013
Revised Manuscript: February 4, 2014
Manuscript Accepted: February 21, 2014
Published: March 10, 2014

Zach Nadler, Bo Wang, Gadi Wollstein, Jessica E. Nevins, Hiroshi Ishikawa, Richard Bilonick, Larry Kagemann, Ian A. Sigal, R. Daniel Ferguson, Ankit Patel, Daniel X. Hammer, and Joel S. Schuman, "Repeatability of in vivo 3D lamina cribrosa microarchitecture using adaptive optics spectral domain optical coherence tomography," Biomed. Opt. Express 5, 1114-1123 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. A. Quigley, “Glaucoma: macrocosm to microcosm the Friedenwald lecture,” Invest. Ophthalmol. Vis. Sci.46(8), 2663–2670 (2005). [CrossRef] [PubMed]
  2. H. A. Quigley and A. T. Broman, “The number of people with glaucoma worldwide in 2010 and 2020,” Br. J. Ophthalmol.90(3), 262–267 (2006). [CrossRef] [PubMed]
  3. K. A. Townsend, G. Wollstein, and J. S. Schuman, “Imaging of the retinal nerve fibre layer for glaucoma,” Br. J. Ophthalmol.93(2), 139–143 (2009). [CrossRef] [PubMed]
  4. G. Wollstein, H. Ishikawa, J. Wang, S. A. Beaton, and J. S. Schuman, “Comparison of three optical coherence tomography scanning areas for detection of glaucomatous damage,” Am. J. Ophthalmol.139(1), 39–43 (2005). [CrossRef] [PubMed]
  5. C. K. S. Leung, S. Lam, R. N. Weinreb, S. Liu, C. Ye, L. Liu, J. He, G. W. K. Lai, T. Li, and D. S. Lam, “Retinal nerve fiber layer imaging with spectral-domain optical coherence tomography: analysis of the retinal nerve fiber layer map for glaucoma detection,” Ophthalmology117(9), 1684–1691 (2010). [CrossRef] [PubMed]
  6. O. Tan, G. Li, A. T.-H. Lu, R. Varma, D. Huang, and Advanced Imaging for Glaucoma Study Group, “Mapping of macular substructures with optical coherence tomography for glaucoma diagnosis,” Ophthalmology115(6), 949–956 (2008). [CrossRef] [PubMed]
  7. O. Tan, V. Chopra, A. T.-H. Lu, J. S. Schuman, H. Ishikawa, G. Wollstein, R. Varma, and D. Huang, “Detection of macular ganglion cell loss in glaucoma by Fourier-domain optical coherence tomography,” Ophthalmology116(12), 2305 (2009).
  8. F. A. Medeiros, L. M. Zangwill, C. Bowd, R. M. Vessani, R. Susanna, and R. N. Weinreb, “Evaluation of retinal nerve fiber layer, optic nerve head, and macular thickness measurements for glaucoma detection using optical coherence tomography,” Am. J. Ophthalmol.139(1), 44–55 (2005). [CrossRef] [PubMed]
  9. E. J. Lee, T.-W. Kim, R. N. Weinreb, K. H. Park, S. H. Kim, and D. M. Kim, “Visualization of the lamina cribrosa using enhanced depth imaging spectral-domain optical coherence tomography,” Am. J. Ophthalmology152(1), 87–95 (2011).
  10. H.-Y. L. Park, S. H. Jeon, and C. K. Park, “Enhanced depth imaging detects lamina cribrosa thickness differences in normal tension glaucoma and primary open-angle glaucoma,” Ophthalmology119(1), 10–20 (2012). [CrossRef] [PubMed]
  11. C. Alexandrescu, A. M. Dascalu, A. Panca, A. Sescioreanu, C. Mitulescu, R. Ciuluvica, L. Voinea, and C. Celea, “Confocal scanning laser ophthalmoscopy in glaucoma diagnosis and management,” J. Med. Life3(3), 229–234 (2010). [PubMed]
  12. D. Ng, L. M. Zangwill, L. Racette, C. Bowd, J. P. Pascual, R. R. A. Bourne, C. Boden, R. N. Weinreb, and P. A. Sample, “Agreement and repeatability for standard automated perimetry and confocal scanning laser ophthalmoscopy in the diagnostic innovations in glaucoma study,” Am. J. Ophthalmol.142(3), 381–386 (2006). [CrossRef] [PubMed]
  13. N. G. Strouthidis, S. Demirel, R. Asaoka, C. Cossio-Zuniga, and D. F. Garway-Heath, “The Heidelberg retina tomograph Glaucoma Probability Score: reproducibility and measurement of progression,” Ophthalmology117(4), 724–729 (2010). [CrossRef] [PubMed]
  14. A. S. Vilupuru, N. V. Rangaswamy, L. J. Frishman, E. L. Smith, R. S. Harwerth, and A. Roorda, “Adaptive optics scanning laser ophthalmoscopy for in vivo imaging of lamina cribrosa,” J. Opt. Soc. Am. A24(5), 1417–1425 (2007). [CrossRef] [PubMed]
  15. T. Akagi, M. Hangai, K. Takayama, A. Nonaka, S. Ooto, and N. Yoshimura, “In vivo imaging of lamina cribrosa pores by adaptive optics scanning laser ophthalmoscopy,” Invest. Ophthalmol. Vis. Sci.53(7), 4111–4119 (2012). [CrossRef] [PubMed]
  16. K. M. Ivers, C. Li, N. Patel, N. Sredar, X. Luo, H. Queener, R. S. Harwerth, and J. Porter, “Reproducibility of measuring lamina cribrosa pore geometry in human and nonhuman primates with in vivo adaptive optics imaging,” Invest. Ophthalmol. Vis. Sci.52(8), 5473–5480 (2011). [CrossRef] [PubMed]
  17. S. Kiumehr, S. C. Park, D. Syril, C. C. Teng, C. Tello, J. M. Liebmann, and R. Ritch, “In vivo evaluation of focal lamina cribrosa defects in glaucoma,” Arch. Ophthalmol.130(5), 552–559 (2012). [PubMed]
  18. A. J. Tatham, A. Miki, R. N. Weinreb, L. M. Zangwill, and F. A. Medeiros, “Defects of the lamina cribrosa in eyes with localized retinal nerve fiber layer loss,” Ophthalmology121, 110–118 (2014). [PubMed]
  19. B. Wang, J. E. Nevins, Z. Nadler, G. Wollstein, H. Ishikawa, R. A. Bilonick, L. Kagemann, I. A. Sigal, I. Grulkowski, J. J. Liu, M. Kraus, C. D. Lu, J. Hornegger, J. G. Fujimoto, and J. S. Schuman, “In vivo lamina cribrosa micro-architecture in healthy and glaucomatous eyes as assessed by optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.54(13), 8270–8274 (2013). [CrossRef] [PubMed]
  20. L. Fontana, A. Bhandari, F. W. Fitzke, and R. A. Hitchings, “In vivo morphometry of the lamina cribrosa and its relation to visual field loss in glaucoma,” Curr. Eye Res.17(4), 363–369 (1998). [CrossRef] [PubMed]
  21. G. Tezel, K. Trinkaus, and M. B. Wax, “Alterations in the morphology of lamina cribrosa pores in glaucomatous eyes,” Br. J. Ophthalmol.88(2), 251–256 (2004). [CrossRef] [PubMed]
  22. N. Sredar, K. M. Ivers, H. M. Queener, G. Zouridakis, and J. Porter, “3D modeling to characterize lamina cribrosa surface and pore geometries using in vivo images from normal and glaucomatous eyes,” Biomed. Opt. Express4(7), 1153–1165 (2013). [CrossRef] [PubMed]
  23. C. Torti, B. Povazay, B. Hofer, A. Unterhuber, J. Carroll, P. K. Ahnelt, and W. Drexler, “Adaptive optics optical coherence tomography at 120,000 depth scans/s for non-invasive cellular phenotyping of the living human retina,” Opt. Express17(22), 19382–19400 (2009). [CrossRef] [PubMed]
  24. R. J. Zawadzki, S. S. Choi, A. R. Fuller, J. W. Evans, B. Hamann, and J. S. Werner, “Cellular resolution volumetric in vivo retinal imaging with adaptive optics–optical coherence tomography,” Opt. Express17(5), 4084–4094 (2009).
  25. Z. Nadler, B. Wang, G. Wollstein, J. E. Nevins, H. Ishikawa, L. Kagemann, I. A. Sigal, R. D. Ferguson, D. X. Hammer, I. Grulkowski, J. J. Liu, M. F. Kraus, C. D. Lu, J. Hornegger, J. G. Fujimoto, and J. S. Schuman, “Automated lamina cribrosa microstructural segmentation in optical coherence tomography scans of healthy and glaucomatous eyes,” Biomed. Opt. Express4(11), 2596–2608 (2013).
  26. D. X. Hammer, R. D. Ferguson, M. Mujat, A. Patel, E. Plumb, N. Iftimia, T. Y. P. Chui, J. D. Akula, and A. B. Fulton, “Multimodal adaptive optics retinal imager: design and performance,” J. Opt. Soc. Am. A29(12), 2598–2607 (2012). [CrossRef] [PubMed]
  27. J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J. Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods9(7), 676–682 (2012). [CrossRef] [PubMed]
  28. T. Y. Zhang and C. Y. Suen, “A fast parallel algorithm for thinning digital patterns,” Commun. ACM27(3), 236–239 (1984).
  29. M. Doube, M. M. Kłosowski, I. Arganda-Carreras, F. P. Cordelières, R. P. Dougherty, J. S. Jackson, B. Schmid, J. R. Hutchinson, and S. J. Shefelbine, “BoneJ: Free and extensible bone image analysis in ImageJ,” Bone47(6), 1076–1079 (2010). [CrossRef] [PubMed]
  30. R. Rezakhaniha, A. Agianniotis, J. T. C. Schrauwen, A. Griffa, D. Sage, C. V. C. Bouten, F. N. van de Vosse, M. Unser, and N. Stergiopulos, “Experimental investigation of collagen waviness and orientation in the arterial adventitia using confocal laser scanning microscopy,” Biomech. Model. Mechanobiol.11(3-4), 461–473 (2012). [CrossRef] [PubMed]
  31. J. L. Jaech, Statistical Analysis of Measurement Errors (Exxon Monographs Series), 1 ed. (Wiley 1985).
  32. J. M. Bland and D. G. Altman, “Statistical methods for assessing agreement between two methods of clinical measurement,” Lancet327(8476), 307–310 (1986). [CrossRef] [PubMed]
  33. J. W. Bartlett and C. Frost, “Reliability, repeatability and reproducibility: analysis of measurement errors in continuous variables,” Ultrasound Obstet. Gynecol.31(4), 466–475 (2008). [CrossRef] [PubMed]
  34. M. D. Roberts, V. Grau, J. Grimm, J. Reynaud, A. J. Bellezza, C. F. Burgoyne, and J. C. Downs, “Remodeling of the connective tissue microarchitecture of the lamina cribrosa in early experimental glaucoma,” Invest. Ophthalmol. Vis. Sci.50(2), 681–690 (2008). [CrossRef] [PubMed]
  35. H. A. Quigley and E. M. Addicks, “Regional differences in the structure of the lamina cribrosa and their relation to glaucomatous optic nerve damage,” Arch. Ophthalmol.99(1), 137–143 (1981). [CrossRef] [PubMed]
  36. M. Winkler, B. Jester, C. Nien-Shy, S. Massei, D. S. Minckler, J. V. Jester, and D. J. Brown, “High resolution three-dimensional reconstruction of the collagenous matrix of the human optic nerve head,” Brain Res. Bull.81(2-3), 339–348 (2010). [CrossRef] [PubMed]
  37. R. Grytz, G. Meschke, and J. B. Jonas, “The collagen fibril architecture in the lamina cribrosa and peripapillary sclera predicted by a computational remodeling approach,” Biomech. Model. Mechanobiol.10(3), 371–382 (2011). [CrossRef] [PubMed]
  38. L. Dandona, H. A. Quigley, A. E. Brown, and C. Enger, “Quantitative regional structure of the normal human lamina cribrosa. A racial comparison,” Arch. Ophthalmol.108(3), 393–398 (1990). [CrossRef] [PubMed]
  39. I. A. Sigal, J. G. Flanagan, I. Tertinegg, and C. R. Ethier, “3D morphometry of the human optic nerve head,” Exp. Eye Res.90(1), 70–80 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited