OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 5, Iss. 4 — Apr. 1, 2014
  • pp: 1160–1172

Statistical intensity variation analysis for rapid volumetric imaging of capillary network flux

Jonghwan Lee, James Y. Jiang, Weicheng Wu, Frederic Lesage, and David A. Boas  »View Author Affiliations

Biomedical Optics Express, Vol. 5, Issue 4, pp. 1160-1172 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (2601 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a novel optical coherence tomography (OCT)-based technique for rapid volumetric imaging of red blood cell (RBC) flux in capillary networks. Previously we reported that OCT can capture individual RBC passage within a capillary, where the OCT intensity signal at a voxel fluctuates when an RBC passes the voxel. Based on this finding, we defined a metric of statistical intensity variation (SIV) and validated that the mean SIV is proportional to the RBC flux [RBC/s] through simulations and measurements. From rapidly scanned volume data, we used Hessian matrix analysis to vectorize a segment path of each capillary and estimate its flux from the mean of the SIVs gathered along the path. Repeating this process led to a 3D flux map of the capillary network. The present technique enabled us to trace the RBC flux changes over hundreds of capillaries with a temporal resolution of ~1 s during functional activation.

© 2014 Optical Society of America

OCIS Codes
(110.4500) Imaging systems : Optical coherence tomography
(170.1470) Medical optics and biotechnology : Blood or tissue constituent monitoring
(170.3880) Medical optics and biotechnology : Medical and biological imaging

ToC Category:
Cardiovascular Applications

Original Manuscript: November 7, 2013
Revised Manuscript: February 12, 2014
Manuscript Accepted: February 19, 2014
Published: March 13, 2014

Jonghwan Lee, James Y. Jiang, Weicheng Wu, Frederic Lesage, and David A. Boas, "Statistical intensity variation analysis for rapid volumetric imaging of capillary network flux," Biomed. Opt. Express 5, 1160-1172 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Y. Zhao, Z. Chen, C. Saxer, S. Xiang, J. F. de Boer, and J. S. Nelson, “Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity,” Opt. Lett.25(2), 114–116 (2000). [CrossRef] [PubMed]
  2. A. Mariampillai, B. A. Standish, E. H. Moriyama, M. Khurana, N. R. Munce, M. K. K. Leung, J. Jiang, A. Cable, B. C. Wilson, I. A. Vitkin, and V. X. D. Yang, “Speckle variance detection of microvasculature using swept-source optical coherence tomography,” Opt. Lett.33(13), 1530–1532 (2008). [CrossRef] [PubMed]
  3. D. Kleinfeld, P. P. Mitra, F. Helmchen, and W. Denk, “Fluctuations and stimulus-induced changes in blood flow observed in individual capillaries in layers 2 through 4 of rat neocortex,” Proc. Natl. Acad. Sci. U.S.A.95(26), 15741–15746 (1998). [CrossRef] [PubMed]
  4. R. K. Wang and L. An, “Doppler optical micro-angiography for volumetric imaging of vascular perfusion in vivo,” Opt. Express17(11), 8926–8940 (2009). [CrossRef] [PubMed]
  5. J. Lee, W. Wu, J. Y. Jiang, B. Zhu, and D. A. Boas, “Dynamic light scattering optical coherence tomography,” Opt. Express20(20), 22262–22277 (2012). [CrossRef] [PubMed]
  6. J. Lee, H. Radhakrishnan, W. Wu, A. Daneshmand, M. Climov, C. Ayata, and D. A. Boas, “Quantitative imaging of cerebral blood flow velocity and intracellular motility using dynamic light scattering-optical coherence tomography,” J. Cereb. Blood Flow Metab.33(6), 819–825 (2013). [CrossRef] [PubMed]
  7. N. Weiss, T. G. van Leeuwen, and J. Kalkman, “Localized measurement of longitudinal and transverse flow velocities in colloidal suspensions using optical coherence tomography,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.88(4), 042312 (2013). [CrossRef] [PubMed]
  8. V. J. Srinivasan, H. Radhakrishnan, E. H. Lo, E. T. Mandeville, J. Y. Jiang, S. Barry, and A. E. Cable, “OCT methods for capillary velocimetry,” Biomed. Opt. Express3(3), 612–629 (2012). [CrossRef] [PubMed]
  9. A. Bouwens, D. Szlag, M. Szkulmowski, T. Bolmont, M. Wojtkowski, and T. Lasser, “Quantitative lateral and axial flow imaging with optical coherence microscopy and tomography,” Opt. Express21(15), 17711–17729 (2013). [CrossRef] [PubMed]
  10. Y. Wang and R. Wang, “Autocorrelation optical coherence tomography for mapping transverse particle-flow velocity,” Opt. Lett.35(21), 3538–3540 (2010). [CrossRef] [PubMed]
  11. X. Liu, Y. Huang, J. C. Ramella-Roman, S. A. Mathews, and J. U. Kang, “Quantitative transverse flow measurement using optical coherence tomography speckle decorrelation analysis,” Opt. Lett.38(5), 805–807 (2013). [CrossRef] [PubMed]
  12. J. Lee, W. Wu, F. Lesage, and D. A. Boas, “Multiple-capillary measurement of RBC speed, flux, and density with optical coherence tomography,” J. Cereb. Blood Flow Metab.33(11), 1707–1710 (2013). [CrossRef] [PubMed]
  13. J. Tokayer, Y. Jia, A.-H. Dhalla, and D. Huang, “Blood flow velocity quantification using split-spectrum amplitude-decorrelation angiography with optical coherence tomography,” Biomed. Opt. Express4(10), 1909–1924 (2013). [CrossRef] [PubMed]
  14. A. Serov, B. Steinacher, and T. Lasser, “Full-field laser Doppler perfusion imaging and monitoring with an intelligent CMOS camera,” Opt. Express13(10), 3681–3689 (2005). [CrossRef] [PubMed]
  15. M. Tomita, Y. Tomita, M. Unekawa, H. Toriumi, and N. Suzuki, “Oscillating neuro-capillary coupling during cortical spreading depression as observed by tracking of FITC-labeled RBCs in single capillaries,” Neuroimage56(3), 1001–1010 (2011). [CrossRef] [PubMed]
  16. B. Stefanovic, E. Hutchinson, V. Yakovleva, V. Schram, J. T. Russell, L. Belluscio, A. P. Koretsky, and A. C. Silva, “Functional reactivity of cerebral capillaries,” J. Cereb. Blood Flow Metab.28(5), 961–972 (2008). [CrossRef] [PubMed]
  17. V. J. Srinivasan, J. Y. Jiang, M. A. Yaseen, H. Radhakrishnan, W. Wu, S. Barry, A. E. Cable, and D. A. Boas, “Rapid volumetric angiography of cortical microvasculature with optical coherence tomography,” Opt. Lett.35(1), 43–45 (2010). [CrossRef] [PubMed]
  18. H. Radhakrishnan and V. J. Srinivasan, “Compartment-resolved imaging of cortical functional hyperemia with OCT angiography,” Biomed. Opt. Express4(8), 1255–1268 (2013). [CrossRef] [PubMed]
  19. Y. Sato, S. Nakajima, N. Shiraga, H. Atsumi, S. Yoshida, T. Koller, G. Gerig, and R. Kikinis, “Three-dimensional multi-scale line filter for segmentation and visualization of curvilinear structures in medical images,” Med. Image Anal.2(2), 143–168 (1998). [CrossRef] [PubMed]
  20. S. Yousefi, J. Qin, Z. Zhi, and R. K. Wang, “Label-free optical lymphangiography: development of an automatic segmentation method applied to optical coherence tomography to visualize lymphatic vessels using Hessian filters,” J. Biomed. Opt.18(8), 086004 (2013). [CrossRef] [PubMed]
  21. G. Liu, A. J. Lin, B. J. Tromberg, and Z. Chen, “A comparison of Doppler optical coherence tomography methods,” Biomed. Opt. Express3(10), 2669–2680 (2012). [CrossRef] [PubMed]
  22. J. Ohtsubo and T. Asakura, “Velocity measurement of a diffuse object by using time-varying speckles,” Opt. Quantum Electron.8(6), 523–529 (1976). [CrossRef]
  23. J. Tokayer and D. Huang, “Effect of blood vessel diameter on relative blood flow estimates in Doppler optical coherence tomography algorithms,” Proc. SPIE 7889, Optical Coherence Tomography and Coherence Domain Optical Methods in BiomedicineXV, 78892X (2011). [CrossRef]
  24. N. Mohan and B. Vakoc, “Principal-component-analysis-based estimation of blood flow velocities using optical coherence tomography intensity signals,” Opt. Lett.36(11), 2068–2070 (2011). [CrossRef] [PubMed]
  25. S. M. S. Kazmi, A. B. Parthasarthy, N. E. Song, T. A. Jones, and A. K. Dunn, “Chronic imaging of cortical blood flow using Multi-Exposure Speckle Imaging,” J. Cereb. Blood Flow Metab.33(6), 798–808 (2013). [CrossRef] [PubMed]
  26. A. Villringer, A. Them, U. Lindauer, K. Einhäupl, and U. Dirnagl, “Capillary perfusion of the rat brain cortex. An in vivo confocal microscopy study,” Circ. Res.75(1), 55–62 (1994). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited